Forest-Genetic method to optimize parameter design of multiresponse experiment

dc.contributor.authorVilla-Murillo, Adriana
dc.contributor.authorCarrión, Andrés
dc.contributor.authorSozzi, Antonio
dc.date.accessioned2020-11-04T15:23:56Z
dc.date.available2020-11-04T15:23:56Z
dc.date.issued2020-08-27
dc.description.abstractWe propose a methodology for the improvement of the parameter design that consists of the combination ofRandom Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization.The first phase corresponds to the previous preparation of the data set by using normalization functions. In thesecond phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called itMultivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase,we obtained the optimal combination of parameter levels with the integration of properties of our modellingscheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us tocompare and validate the virtues of our methodology versus other proposals involving Artificial Neural Networks(ANN) and Simulated Annealing (SA).es_ES
dc.identifier.issn1988-3064
dc.identifier.other10.4114/intartif.vol23iss66pp9-25
dc.identifier.urihttps://hdl.handle.net/20.500.12536/1053
dc.language.isoenes_ES
dc.sourceInteligencia Artificiales_ES
dc.subjectArtificial Intelligencees_ES
dc.subjectGenetic algorithmes_ES
dc.subjectRandom forestes_ES
dc.subjectArtificial Neural networkses_ES
dc.subjectMultivariate analysises_ES
dc.titleForest-Genetic method to optimize parameter design of multiresponse experimentes_ES
dc.typeArtículo de revistaes_ES
uvm.escuelaDepartamento de Ciencias Básicases_ES
uvm.indexScopuses_ES
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
486-Article-1435-1-10-20200827.pdf
Size:
414.13 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: