Anthropometric profile, cardiorespiratory capacity and pulmonary function in an elite Chilean triathlete: A case study

Abstract
The objective of this study was to describe the anthropometric profile, cardiorespiratory capacity and lung function in a high-performance Chilean triathlete ranked first in the national ranking. For this, the body composition profile proposed by Kerr, the somatotype according to Carter and Heath, lung volumes with spirometry according to the criteria of the ATS/ERS, the maximum dynamic inspiratory strength (S-index), the maximum inspiratory flow (FMI) and the maximum oxygen consumption (VO2max) with a treadmill cardiopulmonary exercise test were evaluated. The results showed 50.30% (30.28 kg) of muscle tissue, 21.46% (12.92 kg) of adipose tissue, a musculoskeletal index of 4.4, and a balanced mesomorphic somatotype (ENDO 2.0 – MESO 5.1 – ECTO 2.3). The VO2max was 77 ml/kg/min, the S-Index was 189 cmH2O, the FIM was 10.1 l/sec, the FEV1 was 4.08 l, maximum voluntary ventilation (MVV) was 153 l and a maximum expiratory flow (FEM) of 584 l. In conclusion, the triathlete has a high level of muscle tissue and optimal percentage of subcutaneous body fat with a balanced physical form towards the muscle component. An outstanding cardiorespiratory capacity, inspiratory strength and lung function represents a great adaptation to the endurance tests that make up triathlon, especially swimming on inspiratory strength. Morphofunctional changes associated with the high-performance sports discipline are observed.
Description
Keywords
Performance analysis of sport, Body composition, Somatotype, Triathlon
Citation