Aspect-Combining Functions for Modular MapReduce Solutions

dc.contributor.authorVidal-Silva, Cristian
dc.contributor.authorVillarroel, Rodolfo
dc.contributor.authorRubio, José Miguel
dc.contributor.authorJohnson, Franklin
dc.contributor.authorMadariaga, Érika
dc.contributor.authorUrzúa, Alberto
dc.contributor.authorCarter, Luis
dc.contributor.authorCampos-Valdés, Camilo
dc.contributor.authorLópez-Cortés, Xaviera A.
dc.date.accessioned2019-07-15T08:16:12Z
dc.date.available2019-07-15T08:16:12Z
dc.date.issued2018
dc.description.abstractMapReduce represents a programming framework for modular Big Data computation that uses a function map to identify and target intermediate data in the mapping phase, and a function reduce to summarize the output of the map function and give a final result. Because inputs for the reduce function depend on the map function’s output to decrease the communication traffic of the output of map functions to the input of reduce functions, MapReduce permits defining combining function for local aggregation in the mapping phase. MapReduce Hadoop solutions do not warrant the combining functioning application. Even though there exist proposals for warranting the combining function execution, they break the modular nature of MapReduce solutions. Because Aspect-Oriented Programming (AOP) is a programming paradigm that looks for the modular software production, this article proposes and apply Aspect-Combining function, an AOP combining function, to look for a modular MapReduce solution. The Aspect-Combining application results on MapReduce Hadoop experiments highlight computing performance and modularity improvements and a warranted execution of the combining function using an AOP framework like AspectJ as a mandatory requisite.es_ES
dc.identifier.issn2156-5570
dc.identifier.other10.14569/IJACSA.2018.090871
dc.identifier.urihttps://hdl.handle.net/20.500.12536/107
dc.language.isoenes_ES
dc.sourceInternational Journal of Advanced Computer Science and Applications (IJACSA)es_ES
dc.subjectCombininges_ES
dc.subjectHadoopes_ES
dc.subjectMapReducees_ES
dc.subjectAOPes_ES
dc.subjectAspectJes_ES
dc.subjectAspectses_ES
dc.titleAspect-Combining Functions for Modular MapReduce Solutionses_ES
dc.typeArtículo de revistaes_ES
uvm.carreraIngeniería Civil Informáticaes_ES
uvm.escuelaEscuela de Ingenieríaes_ES
uvm.indexScopuses_ES
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aspect-Combining Functions for Modular MapReduce Solutions.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: