• español (España)
    • English
  • English 
    • español (España)
    • English
  • Login
View Item 
  •   DSpace Home
  • Escuelas, Departamentos y Centros
  • Escuela de Ciencias de la Salud
  • Artículos científicos
  • View Item
  •   DSpace Home
  • Escuelas, Departamentos y Centros
  • Escuela de Ciencias de la Salud
  • Artículos científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Mammogram Images with Segmentation and Colorization for Assisting Breast Cancer Detection

Thumbnail
View/Open
Artículo de Revista: Enhancing Mammogram Images with Segmentation and Colorization for Assisting Breast Cancer Detection (1.125Mb)
Date
2020
Author
Tien Pham, William
Tat Pham, Trung
Illescas Maldonado, Pamela
Statistics
Abstract
This paper presents a combined sequence of the K-mean clustering of mammogram images to identify the region of interest and false colorization of the region of interest to enhance digital mammograms in the context of assisting the analysis for the detection of breast cancer. The K-means clustering technique was selected for its computational efficiency and for its not requiring prior knowledge of the statistical nature of the data. The region of interest is selected among the resulting clusters so that it can be colorized in a magnifying manner along a digitally simulated visible spectrum to enhance visualization of details that is so important for medical experts in their detection of breast cancer. Numerical results are presented in the study as the proof of concept, and demonstration of workability, applicability, and practicality of the newly developed sequential hybrid technique of image enhancement.
URI
https://hdl.handle.net/20.500.12536/1214
Collections
  • Artículos científicos
Metadata
Show full item record
UVM - Universidad Viña del MarAcreditación
Nuestros Sitios
  • CREA (Biblioteca)
  • Repositorio
  • UVM en Medios
Calendario Académico
  • Diurno
  • Vespertino
Fono Admisión

800 37 4100

FONO ALUMNOS (CSE)

32 2462510 (Recreo)

32 2462637 (Miraflores)

32 2462693 (Rodelillo)

Formularios
  • Contacto
  • Denuncia de Acoso Sexual o Discriminación Arbitraria
Nuestras Redes Sociales
Universidad Viña del Mar

Agua Santa 7055, Viña del Mar

  • Políticas de Privacidad

Agua Santa 7055, sector Rodelillo, Viña del Mar.

Implementado por
OpenGeek
 

Browse

Navigate on all siteCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsItem TypesThis CollectionBy Issue DateAuthorsTitlesSubjectsItem Types

My Account

Login

Statistics

View Usage Statistics
UVM - Universidad Viña del MarAcreditación
Nuestros Sitios
  • CREA (Biblioteca)
  • Repositorio
  • UVM en Medios
Calendario Académico
  • Diurno
  • Vespertino
Fono Admisión

800 37 4100

FONO ALUMNOS (CSE)

32 2462510 (Recreo)

32 2462637 (Miraflores)

32 2462693 (Rodelillo)

Formularios
  • Contacto
  • Denuncia de Acoso Sexual o Discriminación Arbitraria
Nuestras Redes Sociales
Universidad Viña del Mar

Agua Santa 7055, Viña del Mar

  • Políticas de Privacidad

Agua Santa 7055, sector Rodelillo, Viña del Mar.

Implementado por
OpenGeek