- Browse by Subject
Artículos científicos
Permanent URI for this collection
Browse
Browsing Artículos científicos by Subject "AspectJ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Modular Aspect-Oriented Programming Approach of Join Point Interfaces(2019) Vidal-Silva, Cristian; Madariaga, Erika; Jiménez, Claudia; Carter, LuisThis paper describes and analyzes the main differences and advantages of the Join Point Interfaces (JPI) as an Aspect-Oriented Programming (AOP) approach for the modular software production concerning the standard aspect-oriented programming methodology for Java (AspectJ) to propose a structural modeling approach looking for modular software solutions. Using a Software Engineering point-of-view, we highlight the relevance of structural and conceptual design for JPI software applications. We model and implement a classic example of AOP using AspectJ and JPI as an application example to review their main difference and highlight the JPI consistency between products (models and code). Our proposal of UML JPI class diagrams allows the definition of oblivious classes which know about their JPI connections, an essential element to adapt and transform tradition like-AspectJ AOP solutions to their JPI version. Thus, for the modular software production and education, JPI seems an ideal software development approach.Item Aspect-Combining Functions for Modular MapReduce Solutions(2018) Vidal-Silva, Cristian; Villarroel, Rodolfo; Rubio, José Miguel; Johnson, Franklin; Madariaga, Érika; Urzúa, Alberto; Carter, Luis; Campos-Valdés, Camilo; López-Cortés, Xaviera A.MapReduce represents a programming framework for modular Big Data computation that uses a function map to identify and target intermediate data in the mapping phase, and a function reduce to summarize the output of the map function and give a final result. Because inputs for the reduce function depend on the map function’s output to decrease the communication traffic of the output of map functions to the input of reduce functions, MapReduce permits defining combining function for local aggregation in the mapping phase. MapReduce Hadoop solutions do not warrant the combining functioning application. Even though there exist proposals for warranting the combining function execution, they break the modular nature of MapReduce solutions. Because Aspect-Oriented Programming (AOP) is a programming paradigm that looks for the modular software production, this article proposes and apply Aspect-Combining function, an AOP combining function, to look for a modular MapReduce solution. The Aspect-Combining application results on MapReduce Hadoop experiments highlight computing performance and modularity improvements and a warranted execution of the combining function using an AOP framework like AspectJ as a mandatory requisite.