Repository logo
  • Communities & Collections
  • All of Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sozzi, Antonio"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Forest-Genetic method to optimize parameter design of multiresponse experiment
    (2020-08-27) Villa-Murillo, Adriana; Carrión, Andrés; Sozzi, Antonio
    We propose a methodology for the improvement of the parameter design that consists of the combination ofRandom Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization.The first phase corresponds to the previous preparation of the data set by using normalization functions. In thesecond phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called itMultivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase,we obtained the optimal combination of parameter levels with the integration of properties of our modellingscheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us tocompare and validate the virtues of our methodology versus other proposals involving Artificial Neural Networks(ANN) and Simulated Annealing (SA).
UVM - Universidad Viña del Mar
Universidad Viña del Mar

Agua Santa 7055, Viña del Mar

Nuestras Redes Sociales
Implementado porOpenGeek