Repository logo
  • Communities & Collections
  • All of Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nualart, Francisco"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Enhanced Astrocyte Activity and Excitatory Synaptic Function in the Hippocampus of Pentylenetetrazole Kindling Model of Epilepsy
    (2023-09-25) Díaz, Franco; Aguilar, Freddy; Wellmann, Mario; Martorell, Andrés; González-Arancibia, Camila; Chacana-Véliz, Lorena; Negrón-Oyarzo, Ignacio; Chávez, Andrés E.; Fuenzalida, Marco; Nualart, Francisco; Sotomayor-Zárate, Ramón; Bonansco, Christian
    Epilepsy is a chronic condition characterized by recurrent spontaneous seizures. The interaction between astrocytes and neurons has been suggested to play a role in the abnormal neuronal activity observed in epilepsy. However, the exact way astrocytes influence neuronal activity in the epileptogenic brain remains unclear. Here, using the PTZ-induced kindling mouse model, we evaluated the interaction between astrocyte and synaptic function by measuring astrocytic Ca2+ activity, neuronal excitability, and the excitatory/inhibitory balance in the hippocampus. Compared to control mice, hippocampal slices from PTZ-kindled mice displayed an increase in glial fibrillary acidic protein (GFAP) levels and an abnormal pattern of intracellular Ca2+-oscillations, characterized by an increased frequency of prolonged spontaneous transients. PTZ-kindled hippocampal slices also showed an increase in the E/I ratio towards excitation, likely resulting from an augmented release probability of excitatory inputs without affecting inhibitory synapses. Notably, the alterations in the release probability seen in PTZ-kindled slices can be recovered by reducing astrocyte hyperactivity with the reversible toxin fluorocitrate. This suggests that astroglial hyper-reactivity enhances excitatory synaptic transmission, thereby impacting the E/I balance in the hippocampus. Altogether, our findings support the notion that abnormal astrocyte–neuron interactions are pivotal mechanisms in epileptogenesis.
UVM - Universidad Viña del Mar
Universidad Viña del Mar

Agua Santa 7055, Viña del Mar

Nuestras Redes Sociales
Implementado porOpenGeek