- Browse by Author
Browsing by Author "LAGO Collaboration"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Forbush decrease on September 6-13, 2017 observed by the Tanca water-Cherenkov detector(2021-05-07) de Aguiar, Renan; Campos Fauth, Anderson; LAGO Collaboration; Echiburu, MauricioSolar activity was intense in September 2017 and its effects were observed in different detectors placed at the Earth’s surface. Three halo Coronal Mass Ejections (CME) hit the planet and caused magnetic storms. The effects of the CMEs on the flux of galactic cosmic rays at ground level were observed by the Tanca detector, which is one of the water-Cherenkov detectors (WCD) that make up the Latin American Giant Observatory (LAGO). In this paper we present the detection of Forbush events observed by Tanca during the month of September 2017. This WCD is installed on the campus of the University of Campinas, in Brazil, having three photomultiplier tubes that detect Cherenkov photons produced by cosmic radiation in 11400 liters of ultra pure water. We present the description and performance of the experimental apparatus and the observation on days 6th, 8th and 13th of the Forbush events originated by the CMEs. A decrease in the cosmic rays flux due to a stream inTeraction region was also observed on 14th September. These results were compared with observations made by neutron monitors and indices of the Earth’s magnetic activity.Item Forbush decrease on September 6-13, 2017 observed by the Tanca water-Cherenkov detector(2021) de Aguiar, Renan; Campos Fauth, Anderson; LAGO CollaborationSolar activity was intense in September 2017 and its effects were observed in different detectors placed at the Earth’s surface. Three halo Coronal Mass Ejections (CME) hit the planet and caused magnetic storms. The effects of the CMEs on the flux of galactic cosmic rays at ground level were observed by the Tanca detector, which is one of the water-Cherenkov detectors (WCD) that make up the Latin American Giant Observatory (LAGO). In this paper we present the detection of Forbush events observed by Tanca during the month of September 2017. This WCD is installed on the campus of the University of Campinas, in Brazil, having three photomultiplier tubes that detect Cherenkov photons produced by cosmic radiation in 11400 liters of ultra pure water. We present the description and performance of the experimental apparatus and the observation on days 6th, 8th and 13th of the Forbush events originated by the CMEs. A decrease in the cosmic rays flux due to a stream inTeraction region was also observed on 14th September. These results were compared with observations made by neutron monitors and indices of the Earth’s magnetic activity.Item GDAS atmospheric models in astroparticle shower simulations(2021) Grisales-Casadiegos, J.; Sarmiento-Cano, C.; Núñez, Luis A.; LAGO CollaborationAtmospheric conditions affect the development of cascades of secondary particles produced by primary cosmic rays. Global Data Assimilation System, implementing atmospheric models based on meteorological measurements and numerical weather predictions, could significantly improve the outcomes of the simulations for extensive air showers. In this work, we present a methodology to simulate the effect of the atmospheric models in secondary particle flux at the Earth’s surface. The method was implemented for Bucaramanga-Colombia, using ARTI: a complete computational framework developed by the Latin American Giant Observatory Collaboration to estimate the particle spectra on Water Cherenkov Detectors depending on the geographical coordinates. We observe differences in the total flux that varies monthly concerning the subtropical summer atmospheric profile as preliminary results.Item Study of the effect of seismically-induced geoelectric and geomagnetic fields on secondary particle detection at a LAGO site(2022-03-18) Coloma Borja, Diego Alberto; Carrera Jarrin, Edgar; Echiburu, Mauricio; LAGO CollaborationThe LAGO (Latin American Giant Observatory) project is an extended Astroparticle Observatory at global scale. It is mainly oriented to basic research on three branches of Astroparticle physics: the Extreme Universe, Space Weather phenomena, and Atmospheric Radiation at ground level. This work is framed in the latter branch, its aim is to study the potential effects on extensive air showers from changes in geoelectric and geomagnetic fields, induced by the onset of seismic activity. For this purpose, simulations for flux of secondaries are performed with ARTI, a tool developed by LAGO that combines Magnetocosmics, CORSIKA, and Geant4 to account, respectively, for the propagation of a shower by a primary particle, geomagnetic corrections, and detector response. Using ARTI, we have calculated the radiation background at the LAGO Site in Universidad San Francisco de Quito (2200 m.a.s.l). Regular conditions for the Earth's electromagnetic field are taken from the NCEI Geomagnetic Calculator for specific fair-weathered days above the location. Variations from this regularity are introduced based on relevant studies on seismic activity. The results show that there exists an effect on the number of secondary particles at ground level, which could, in principle, be detected by a LAGO WCD detector.Item The EOSC-Synergy cloud services implementation for the Latin American Giant Observatory (LAGO)(2021-12-30) Rubio-Montero, A.J.; Pagán-Muñoz, R.; Mayo-García, R.; Pardo-Diaz, A.; Sidelnik, I.; Asorey, H.; Echiburu, M.; LAGO CollaborationThe Latin American Giant Observatory (LAGO) is a distributed cosmic ray observatory at a regional scale in Latin America, by deploying a large network of Water Cherenkov detectors (WCD) and other astroparticle detectors in a wide range of latitudes from Antarctica to México, and altitudes from sea level to more than 5500 m a.s.l. Detectors telemetry, atmospherics conditions and flux of secondary particles at the ground are measured with extreme detail at each LAGO site by using our own-designed hardware and firmware (ACQUA). To combine and analyse all these huge amount of data, LAGO developed ANNA, our data analysis framework. Additionally, ARTI, a complete framework of simulations designed to simulate the expected signals at our detectors coming from primary cosmic rays entering the Earth atmosphere, allowing a precise characterization of the sites in realistic atmospheric, geomagnetic and detector conditions. As the measured and synthetic data started to flow, we are facing challenging scenarios given the large amount of data emerging, performed on a diversity of detectors and computing architectures and e-infrastructures. These data need to be transferred, analyzed, catalogued, preserved, and provided for internal and public access and data-mining under an open e-science environment. In this work, we present the implementation of ARTI at the EOSC-Synergy cloud-based services as the first example of LAGO' frameworks that will follow the FAIR principles for provenance, data-curation and re-using of data. For this we calculate the flux of secondary particles expected in up to 1 week at detector level for all the 26 LAGO, and the 1-year flux of high energy secondaries (pS>800 GeV/c) expected at the ANDES Underground Laboratory and other sites. Therefore, we show how this development can help not only to LAGO but other data-intensive cosmic rays observatories, muography experiments and underground laboratories.Item The Latin American Giant Observatory (LAGO) capabilities for detecting Gamma Ray Bursts(2022-03-18) Sarmiento-Cano, Christian; Asorey, H.; Sacahui, J.R.; Otiniano, L.; Sidelnik, I.; LAGO Collaboration; Echiburu, Mauricio A.The Latin American Giant Observatory (LAGO) consists of a network of small water Cherenkov detectors (WCD) located at different sites in Latin America. It is a large aperture observatory sensitive to high energy gamma rays and due to its high duty cycle, LAGO constitutes a facility to detect transient events from the ground. Gamma Ray Bursts (GRBs) are of the brightest transients detected, with typical energies in their prompt phase ranging from keV to MeV, but theoretical models predict emissions at higher energies in the early times of the afterglow emission, and recently GRB190114C was the first GRB detected at TeV energies by the MAGIC experiment. In this work, we present the results of the expected sensitivity of LAGO for possible events like GRB190114C. We performed simulations in four of the high altitude LAGO sites projected to assess the sensitivity of the Observatory for this kind of events, using the ARTI toolkit developed by LAGO. We simulate photon showers with different spectral slopes and energies from 200 GeV to 1 TeV using the parameters presented by MAGIC for the recorded event. We also present maps of field of view of the studied sites with the observed GRBs by Fermi-GBM from 2019 to 2021.