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Campylobacter hepaticus is the aetiological agent of Spotty Liver Disease

(SLD). SLD can cause significant production loss and mortalities among

layer hens at and around peak of lay. We previously developed an enzyme

linked immunosorbent assay (ELISA), SLD-ELISA1, to detect C. hepaticus

specific antibodies from bird sera using C. hepaticus total proteins and

sera pre-absorbed with Campylobacter jejuni proteins. The high specificity

achieved with SLD-ELISA1 indicated the presence of C. hepaticus specific

antibodies in sera of infected birds. However, some of the reagents used in

SLD-ELISA1 are time consuming to prepare and di�cult to quality control.

This understanding led to the search for C. hepaticus specific immunogenic

proteins that could be used in recombinant forms as antibody capture antigens

in immunoassay design. In this study, an immunoproteomic approach that

combined bioinformatics analysis, western blotting, and LC MS/MS protein

profiling was used, and a fragment of filamentous hemagglutinin adhesin

(FHA), FHA1,628−1,899 with C. hepaticus specific antigenicity was identified.

Recombinant FHA1,628−1,899 was used as antigen coating on ELISA plates

to capture FHA1,628−1,899 specific antibodies in sera of infected birds.

SLD-ELISA2, based on the purified recombinant FHA fragment, is more

user-friendly and standardizable than SLD-ELISA1 for screening antibody

responses to C. hepaticus exposure in hens. This study is the first report of

the use of FHA from a Campylobacter species in immunoassays, and it also

opens future research directions to investigate the role of FHA in C. hepaticus

pathogenesis and its e�ectiveness as a vaccine candidate.
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FIGURE 4

Determination of C. hepaticus specific immunogenicity of the recombinant proteins coded by PEGs 407, 433, 486, and 1,316 by western

blotting using individual SLD positive and negative sera. (A) PVDF membrane blotted with E. coli cell lysates (PEGs 407, 486, and 1,316) and

probed with sera from four SLD positive birds, P1, P2, P3, and P4 and four negative control birds, N1, N2, N3, and N4. (B) PVDF membrane

blotted with E. coli cell lysate (PEG 433) and probed with sera from three SLD positive birds, P1, P2, and P3, and two negative control birds, N1

and N2. Only the recombinant protein encoded by PEG 1,316 showed C. hepaticus specific immunogenicity as it was recognized by SLD

positive sera and not by the negative control sera. The recombinant proteins encoded by PEGs 433, 407, and 486 cross reacted with antibodies

in several SLD negative sera. M–Precision plus protein ladder (Bio-Rad).

PVDF membranes blotted with E. coli cell lysates after
expression were probed using pooled SLD positive sera to
determine the immunogenicity of the 17 expressed recombinant
proteins. The recombinant proteins encoded by PEGs 407, 433,
486, and 1,316 were recognized by the antibodies in pooled sera.
The four proteins showed distinct bands of the expected size on
western blots probed using pooled SLD positive sera, Coomassie
staining and anti-his western blotting, and each was absent
in the uninduced E. coli cell lysates. However, when probed
using individual SLD positive and SLD negative sera, only the
recombinant protein encoded by PEG 1,316, a fragment of FHA,
showed C. hepaticus specific immunogenicity (Figure 4). The

recombinant protein encoded by PEG 407 cross-reacted with all
four negative control sera, the recombinant protein encoded by
PEG 486 cross-reacted with three of the four negative control
sera and the recombinant protein encoded by PEG 433 cross-
reacted with both negative control sera assayed suggesting that
these proteins are not specific to C. hepaticus. Therefore, the
recombinant FHA fragment produced by E. coli harboring
PEG 1,316 gene fragment was used in the development of
SLD-ELISA2. The recombinant FHA fragment was named as
FHA1,628−1,899, to indicate the length and position of amino
acid residues within the native FHA protein that were included
in the recombinant protein. The optimal expression conditions
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FIGURE 5

Optimisation of SLD-ELISA2 parameters. (A) Sera dilution and (B) Protein coating. The red arrows indicate the optimal values.

to produce recombinant FHA1,628−1,899 was 4 h of incubation
after induction with 0.1mM IPTG at 37◦C.

Development of SLD-ELISA2 using
purified recombinant FHA1,628–1,899

Purified recombinant FHA1,628−1,899 was used as the
coating protein on ELISA plates. The optimal antigen coating
concentration on ELISA plates was identified as 0.5 µg of
purified protein/ml as the difference in absorbance values of
the positive control P3, and negative controls N1 and N2 were
very low in 1.0 and 2.0µg/ml coating. The difference between
positive and negative samples were furthermore in 0.25µg/ml
coating, nevertheless, the absorbance of SLD-positive samples
also reduced. Therefore, 0.5µg/ml was chosen as the optimal
coating concentration to improve the assay sensitivity (minimize
the chance of weak positives being categorized as negatives due
to low absorbance) and assay specificity (reduce the absorbance
from negative samples). One in a thousand dilution of sera was
determined to be optimal for distinguishing SLD positive and
SLD negative samples as the absorbance of positive samples in
1,000-fold dilution was close to that from 500-fold dilution, and
it dropped at 2,000-fold dilution. The absorbance from negative
controls was steadily decreasing with dilution (Figure 5).

The cut-off value for the assay was calculated as 0.224 (mean
+ 2SD of 57 negative control samples used in this study).
The sera samples used to develop and test SLD-ELISA2 from
naturally and experimentally infected birds were all but one
positive in SLD-ELISA1 (98% sensitivity). The sera samples from
all negative control birds were negative in SLD-ELISA1 (100%
specificity). SLD-ELISA2 results were congruent with SLD-
ELISA1 in 94% (108/115) of the samples. These negative control
birds were shown to contain either or both of C. jejuni and C.

coli DNA (10). Therefore, SLD-ELISA2 negative results from

those birds confirms that the anti-C. jejuni and C. coli antibodies
are not cross-reactive to FHA1,628−1,899. The 10 sera samples
from the naturally infected group and 44 of 48 samples from
the experimentally infected group had absorbance values well
above the cut off value 0.224, resulting in 93.1% assay sensitivity
(Figure 6). The assay specificity was 94.73% with the absorbance
values of all but three sera samples from the negative control
group below the cut-off value. Statistical analysis using one way
ANOVA confirmed that the absorbance values of the naturally
and experimentally infected groups were significantly different
to the negative control group with a p < 0.0001 (Figure 6).

SLD-ELISA2 assay precision

Intra-assay precision of SLD-ELISA2 ranged between 1 and
9% with an average coefficient of variation (CV) of 3%. The
inter-assay variation of the positive control sample assayed
over 12 different days in six replicates was 13.7% with a
mean absorbance value 0.706 and standard deviation 0.097.
Absorbance value corrections was made for samples assayed in
each plate by multiplying the absorbance values of all samples by
the ratio (0.706/actual absorbance of positive control obtained in
that ELISA plate), to standardize the absorbance value of positive
control in each assay plate to 0.706.

Discussion

Filamentous hemagglutinin adhesin has been reported
to be a major virulence factor in several human and animal
pathogens, including Acinetobacter baumannii, Bordetella

pertussis, Bordetella bronchiseptica, Moraxella catarrhalis, and
Pseudomonas fluorescens (26–30). The main function of FHA is
to aid in the attachment of pathogens to host cells. FHA from
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FIGURE 6

Absorbance produced by anti-FHA antibodies present in the bird sera used in SLD-ELISA2. Ordinary one-way ANOVA pairwise comparison

results were highly significant with ****p < 0.0001 for both naturally and experimentally infected groups compared to the negative

control group.

Bordetella pertussis has been used in acellular pertussis vaccines
because of its immunogenicity (30, 31). The role of FHA in cell
adhesion has also been reported in several C. jejuni and C. coli

strains (32–34). However, the identity of C. hepaticus FHA with
FHA present in other Campylobacter species was <72%. The
identity of the immunogenic fragment identified in this study,
FHA1,628−1,899 was further low (<64%). This variability in
amino acid residues could be the reason for C. hepaticus specific
immunogenicity of FHA1,628−1,899. The present study is the
first report of the use of an FHA from a Campylobacter species
in immunological assays.

Immunoproteomic methods have previously been used
for the identification of immunogenic proteins from several
pathogens (35–39). FHA1,628−1,899 was identified as a C.

hepaticus specific immunogenic protein from a group of 19
proteins that were progressively shortlisted from 1,518 C.

hepaticus PEGs after extensive bioinformatic analysis. Even
though three other recombinant proteins annotated as surface-
exposed lipoprotein JlpA, flagellar hook-associated protein FlgL
and a hypothetical protein showed immunogenicity, they were
cross-reactive with antibodies present in sera of birds from the
negative control group, presumably indicating that antibodies
to other campylobacter infections, such as C. jejuni and C.

coli, cross-reacted.
FHA and MOMP were the top matches in protein

identification from gel bands in the 220 and 25 kDa regions,
respectively, using LC MS/MS protein identification. However,
the recombinant MOMP expressed in E. coli did not show any
immunogenicity on western blots probed using SLD positive
sera, probably indicating that the immunogenic protein within
the 25 kDa region is a less abundant protein of similar size

to MOMP. The finding of FHA and MOMP in both LC
MS/MS protein identification and bioinformatics analysis also
supports the rationale used in the applied molecular and
bioinformatics analysis methods to identify a candidate protein
for ELISA development.

Furthermore, FHA1,628−1,899 is 100% conserved among
12 Victorian and South Australian C. hepaticus strains and
96% conserved among the two Queensland strains (2).
FHA1,628−1,899 also shared 98.55% identity with the USA C.

hepaticus strain (40) and 97.80% identity with the UK C.

hepaticus strains (7). The high similarity of FHA1,628−1,899

among C. hepaticus strains isolated from geographically distinct
locations suggests the universal application of this assay.
Another species of campylobacter named asCampylobacter bilis,
has recently been isolated from birds with SLD in Australia (41).
However, the homologous FHA fragment in C. bilis only share
56% amino acid identity with FHA1,628−1,899. The effectiveness
of SLD-ELISA2 in detecting anti-FHA1,628−1,899 antibodies in
C. bilis infected birds needs to be experimentally determined.

The specificity and sensitivity of SLD-ELISA2, 95 and 93%,
respectively, were slightly lower than that of SLD-ELISA1 for
experimentally infected and negative control samples. However,
SLD-ELISA2 detected anti-FHA1,628−1,899 antibodies in all
10 naturally infected samples. Three samples in the negative
control group were positive to SLD-ELISA2 suggestive of them
being true positives with high anti-FHA1,628−1,899 antibody
titer that was not detected by SLD-ELISA1, or the presence
of antibodies cross-reacting with FHA1,628−1,899 in the bird
sera. The experimentally infected group consisted of birds 3,
6, 9, and 12-weeks post C. hepaticus challenge and sera from
most birds had antibodies against FHA1,628−1,899. The serum
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from one bird tested negative to both ELISAs, indicative of
the lack of SLD specific immune response in that bird. Three
other birds in the experimentally infected group had anti-
FHA1,628−1,899 antibody levels slightly lower than the assay
cut-off value. However, SLD-ELISA1 was able to detect C.

hepaticus specific antibodies from these samples because the
absorbance obtained in SLD-ELISA1 is a collective response
from the antibody cohort generated against the entire collection
of C. hepaticus proteins whereas SLD-ELISA2 measures the
antibodies that specifically recognize the immunogenic fragment
of FHA. The bird-to-bird variation in antibody titres could
be another reason for the slightly higher assay sensitivity for
SLD-ELISA1. Nevertheless, considering the extra resources and
time required for performing the pre-absorption step in SLD-
ELISA1, SLD-ELISA2 is a more convenient option, especially
when working with large sample sizes as in the identification
of the seroconverted birds in farms or in assessing the immune
response of birds in large scale experimental infection studies.
SLD-ELISA2 has been used to assay sera samples collected from
more than 700 birds in commercial free-range farms to better
understand the seroprevalence of anti-C. hepaticus antibodies in
Australian free-range farms (42).

The SLD-ELISA2 performance/accuracy was assessed based
on intra and inter assay precision/ variation calculated as
%CV. The intra-assay variation (between-run) was 13.7%
and the inter-assay variation (within run) ranged between 1
and 9%. Both inter and intra-assay precision was within the
acceptable limits of 15% (25) and demonstrates the reliability
and repeatability of the assay.

To conclude, this study has identified a C. hepaticus

protein, filamentous hemagglutinin adhesin, and has developed
it for use as a capture ligand to identify C. hepaticus specific
antibodies. The newly developed ELISA could detect birds that
has previously been exposed to C. hepaticus infection and can
therefore be used in SLD epidemiological studies. The main
finding of the study, C. hepaticus specific antigenicity of FHA,
has also opened opportunities for future research in SLD vaccine
and pathogenicity studies.
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