
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

A Spin / Promela Application for Model checking 
UML Sequence Diagrams

Cristian L. Vidal-Silva1*, Rodolfo Villarroel2, José Rubio3, Franklin Johnson4, Erika Madariaga5, Camilo Campos6, and Luis Carter6

1Ingenierı́a Civil Informática, Escuela de Ingenierı́a, Universidad Viña del Mar, Viña del Mar, Chile
2Escuela de Ingenierı́a Informática, Facultad de Ingenierı́a, Pontificia Universidad Católica de Valparaı́so, Valparaı́so, Chile

3Área Académica de Informática y Telecomunicaciones, Universidad Tecnológica de Chile INACAP, Santiago, Chile
4Depto. Disciplinario de Computación e Informática, Facultad de Ingenierı́a, Universidad de Playa Ancha, Valparaśo, Chile

5Ingenierı́a Informática, Facultad de Ingenierı́a, Ciencia y Tecnologı́a, Universidad Bernardo O’Higgins, Santiago, Chile
6Ingenierı́a Civil Industrial, Facultad de Ingenierı́a, Universidad Autónoma de Chile, Talca, Chile

Abstract—UML sequence diagrams usually represent the
behavior of systems execution. Automated verification of UML
sequence diagrams’ correctness is necessary because they can
model critical algorithmic behaviors of information systems. UML
sequence diagrams applications are often on the requirement and
design phases of the software development process, and their
correctness guarantees the accurate and transparent implemen-
tation of software products. The primary goal of this article is to
review and improve the translation of basic and complex UML
sequence diagrams into Spin / Promela code taking into account
behavioral properties and elements of combined fragments of
UML sequence diagrams for synchronous and asynchronous
messages. This article also redefines a previous proposal for
a transition system for UML sequence diagrams by specifying
Linear Temporal Logic (LTL) formulas to verify the model
correctness. We present an application example of our modeling
proposal on a modified version of a traditional case study by
using UML sequence diagrams to translate it into Promela code
to verify their properties and correctness.

Keywords—Spin / Promela; UML Sequence Diagrams; Fault
Tolerance; LTL formulas; Combined Fragment

I. INTRODUCTION

Developing computerized systems requires the use of mod-
eling languages like UML to identify and characterize the
systems structural and behavioral elements along with their
properties [1] [2]. Namely for behavior modeling, UML offers
use cases, sequences and state diagrams [3].

UML use case diagrams are usual at the beginning of
the software development process [1] [2] [3]. UML sequence
diagrams are useful to identify participant objects in use case
scenarios and how those objects interact each other during the
use case execution process. Usually participant objects in UML
sequence diagrams modeled scenarios are part of the system’s
classes and respect their properties and communication meth-
ods [1] [2] [3].

UML state diagrams and UML sequence diagrams are
usual in the design stage of the software development pro-
cess. Even though UML state diagrams can represent states,
state transitions, and events for those state changes either of
individual objects or an instance of the complete system, those
models do not give details about objects involved in the state

* Corresponding author

changes (UML state diagrams do not represent interactions
among objects in the system). On the other hand, UML
sequence diagrams model the execution of systems by repre-
senting each communication (message) among their participant
objects. UML sequence diagrams traditionally model only one
execution scenario of the model system (a representative and
critical execution situation) because multiple scenarios exist.
Taking into consideration the model of algorithmic interactions
by combined fragments of UML 2.0 sequence diagrams and
the use of gates to represent modular behavior, without a doubt
UML sequence diagrams are usable for modeling all of the
interactions within a system.

Each model of an entirely consistent computerized system
should be consistent (valid) with the user requirements as
well as with each other valid product [4]. Using that base
idea and assuming consistent previous models, this article
describes steps to reach consistent UML sequence diagrams
for a software system.

A system model is formally consistent with the user
requirements if those requirements can be written and verified
as correct LTL (Linear Temporal Logic) formulas [5] [6] [7]
[8]. Thus, it is relevant to consider that Promela language [7]
[9] allows verifying the correctness of LTL formulas.

Each model of an entirely consistent computerized system
should be consistent (valid) with the user requirements as
well as with each other valid product [4]. For that base idea
and valid models for the system’s requirements, this article
describes steps to reach consistent and valid UML sequence
diagrams for a software system.

Formally talking, a system model is consistent with the user
requirements if those requirements are writeable and verifiable
as correct LTL formulas [6] [7]. Thus, it is relevant to consider
that Promela language [7] [9] allows verifying the correctness
of LTL formulas.

Taking into account current references about the correct-
ness verification of UML sequence diagrams [6] [10] [11]
with the common application of the model checker Spin /
Promela and other formal tools [12] [13], the main goals of this
article are to improve previous concerning the representation
in Promela code of UML sequence diagrams [12] [10] and to
give the necessary steps for establishing LTL formulas to verify
properties of execution scenarios for the modeled system.

www.ijacsa.thesai.org 586 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

This article promotes the use of UML sequence diagrams
for modeling system behavior. This article uses a modified
version of an existing case study [10] [11] for translating UML
sequence diagrams into Promela code just to show improve-
ments in the translation algorithm and highlight new consid-
erations for the system transition states in the specification
of LTL formulas to verify the consistency and correctness of
systems’ models. This article takes into account synchronous
and asynchronous messages in the translation process, as well
as additional details for the modeling and consideration of
combined fragments of UML sequence diagrams. Thus, the
correctness of a UML 2.0 sequence diagram for our case study
is completely valid.

This article organizes as follows: Section 2 describes the
main characteristics of UML sequence diagrams and describes
a case study modeling its execution using a UML sequence dia-
gram. Section 3 presents algorithms to translate UML sequence
diagrams into Promela code with their application to the case
study. Section 4 describes how to define a state transition
system for UML sequence diagrams to specify LTL formulas
of the modeled system for their correctness verification. In this
section LTL formulas of the case study are obtained as well.
Finally, section 5 indicates the pros and cons of this proposal
along with future works and conclusions for this study.

II. UML SEQUENCE DIAGRAMS

In object-oriented software development, after defining
actors and use cases for the application, a common task is
to model and analyze the behavior or execution of use cases.
Likewise, after establishing the main structural elements of
the system, that is, classes and their components (attributes
and methods), a traditional modeling task is to know the
behavior and interaction of participant objects of those classes
on critical scenarios to analyze behavioral characteristics of
the participants. UML sequence diagrams permit describing
system scenarios and understanding how their participant ob-
jects interact and react to special conditions over time [1] [3].
Participant elements, named or unnamed blocks, interact and
communicate using synchronous or asynchronous messages
(open and solid arrows, respectively).

UML sequence diagrams allow establishing combined frag-
ments to support concurrent and parallel behavior, alternative
and optional behavior, cycles, and exceptions [1] [2] [3]. Even
though, there may be a high number of system scenarios,
modeling critical scenarios of a system along with their
participant instances is a relevant task for verifying a correct
system execution.

Concerning the works of [2] and [3], UML sequence
diagrams show collaborative behavior among participant ob-
jects, but sequence diagrams are not adequate to define the
complete behavior and details for a particular object. For
behavioral modeling of a single object, applying UML state
diagram is more convenient. Even though UML state diagrams
allow modeling the whole system behavior (the system as
an object), to deduce all participant objects for each state
change is neither simple nor direct. UML sequence diagrams
allow modeling particular scenarios of the system execution,
modularizing algorithmic behavior (combined fragments), and
mixing behavioral scenarios (combined fragments and gates).
A complete system behavior model is reachable.

As a practical application, this article models a modified
version of a traditional case study [10] [11], the ATM system,
to show new considerations to translate UML sequence dia-
grams into Promela code: to define guards of the associated
state transition system to consistently specify LTL formulas
for their correctness verification, and to be able to reach a
correctness verification of the complete model.

Figure 1 shows the UML sequence diagrams for a scenario
of the case study for interactions among anonymous instances
of the classes User, ATM, and Bank. A user first inserts his /
her card in the ATM (InsertCard() message); then, the ATM
in parallel (combined fragment par), first, communicates with
the Bank to validate the card status; and, second, asks for and
receives the user introduced PIN. Two possible results exist
regarding the card status (combined fragment alt): 1. if the
card status is OK (Cardok = true), ATM asks for and receive
the PIN validation; 2. if the card is not valid (Cardok = false),
then the card is ejected. Two possible results exist concerning
the PIN validation (combined fragment alt): 1. if the PIN were
not valid, the card is ejected; 2. if the PIN were valid, the
user can proceed to operate with its bank account using the
ATM. A combined fragment alt exists to proceed with a bank
transaction: 1. if the card or PIN were not valid, then the
card is ejected; 2. if the card and the PIN were valid, then
the User provides his account and the desired bank operation
for the ATM to proceed. Assuming only 2 operations exist
in the ATM (CashAdvance and ejectCard), the last combined
fragment alt contains a combined fragment loop concerning the
operation selection that iterates as long as the chosen operation
is not ejectCard. For CashAdvance, the User indicates the
required quantity of cash, then the ATM checks the ATM card
balance and delivers its status. After, because BalanceOk =
true or BalanceOk = false, there is an alt combined fragment to
indicate either t pick the cash or insufficient money. Following
this combined fragment alt, inside the loop the User can choose
a new operation in the ATM. Finally, after finishing the loop,
the card is ejected.

III. ALGORITHM TO TRANSLATE A UML SEQUENCE
DIAGRAM INTO PROMELA CODE

In general, each participant of a UML sequence diagram is
a process in Promela (Process or Protocol Meta Language).
Basically, for two instances A and B in a UML sequence
diagram, when A sends a message to B, either that corresponds
to a signal or to a request of a method of B [14]. Modeling this
situation in Promela, because Promela supports sending and
receiving messages between processes by channels, A is the
sender and B is the receiver of the message in a channel with
the same name as the original message in the UML sequence
diagram. Furthermore, when A needs return values, B sends
them using an additional channel, ROriginalName, including
its output parameters.

It is entirely relevant to consider the synchronization nature
of each message (synchronous or asynchronous), because
in Promela the size of a channel allows determining that
channels behavior [9]. A channel with size =1 represents an
asynchronous channel while a channel with size = 0 represents
a rendezvous communication or synchronous channel.

It is entirely relevant to consider the synchronization nature
of each message (synchronous or asynchronous), because

www.ijacsa.thesai.org 587 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 1. UML Sequence Diagram for a Scenario of the ATM System.

www.ijacsa.thesai.org 588 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

in Promela the size of a channel allows determining that
channels behavior [7]. A channel with size =1 represents an
asynchronous channel while a channel with size = 0 represents
a rendezvous communication or synchronous channel.

Furthermore, each synchronous message implies that the
sender of the message has to wait until getting informed about
a complete reception of the message. Thus, the sender needs
to receive a reception confirmation to continue its work. Usu-
ally, each synchronous message in UML sequence diagrams
requires a return value. This situation was solved in the classic
UML by the use of return messages, but this situation is
implicit in UML 2.0, that is, a return message is not necessary.
For example, for the first message in the case study which is
synchronous, there is an associated return value which should
be known by the User, status of the card (CardOK), to continue
in this scenario. One solution is to represent these required
values as global variables in Promela, but global variables
are visible for all the system processes, so messages are not
directly required for communicating. A different solution for
those synchronous messages which require a return value is
to include an asynchronous channel to return those required
values. This option claims for establishing communication
because to see the result of any synchronous operation, a return
message (R Message) is necessary. Nevertheless, as we later
review, global variables are used for sharing elements among
the main process and sub-processes. Thus, in the case study, to
know the card status, there should be a return message in the
first section of the combined fragment par, after ATM receives
that information from the Bank, but this action is part of a
section of the combined fragment par, and the process User
communicates in a different section as well. So, this particular
scenario includes a return message to know the card status as
well as a global shared variable for the process User and its
sub-processes User1 and User2. This modeling idea represents
an essential element not considered by previous articles about
this topic.

Moreover, a situation exists for which the use of asyn-
chronous messages is typical: when a participant sends a mes-
sage to itself. The simplest solution to represent the previous
case in Promela is using an asynchronous channel of buffer
size 1 to send and receive the message.

Through defining a channel in Promela, one can determine
a message and its parameter. Besides, we define a symbolic
name Parameters by using mtype. The main goal of this
symbolic type is to support messages without parameters like
signals in UML sequence diagrams. Thus, in Promela code the
name of a message is represented by a channel name which
also includes the type of the original parameters of the message
with an additional parameter mtype for the symbolic name
Parameters.

Promela uses special symbols for communication by send-
ing and receiving values through channels, symbols ? and
! respectively. Therefore, so far there is an algorithm for
translating a simple UML sequence diagram without combined
fragments into Promela:

• Defining a symbolic name for the parameters.

• Identifying the synchronization nature of messages by
creating buffer channels of size 0 for synchronous

messages, and buffer channels of size 1 for asyn-
chronous messages. These channels represent mes-
sages of the UML sequence diagram using the same
name as those messages. If a synchronous message
requires of returns values, a new synchronous channel
R MessageName is defined along with the type of its
return values. When a channel is defined, it has the
same name as the original message and has a param-
eter mtype along with the original kind of message
parameters.

• Defining a process for each participant in the UML
sequence diagram, and assuring that each process
sends and receives messages in the same order as in
the sequence diagram.

• Defining an init process that runs the defined process
associated with the UML sequence diagram partici-
pants.

After establishing the main step of a basic algorithm for
translating simple UML sequence diagrams into Promela code,
it is time to define a complete algorithm for that translation
and thus be able to verify properties of the modeled scenario.
After getting an algorithm with the established purpose, we
will apply it to the model of the case study in Figure 1 for its
translation into Promela code. To proceed, it is necessary to
review the translation of the UML sequence diagram combined
fragments into Promela code. Consequently, following the
structure of the case study, we review first the translation of
combined fragment par and apply it to the first part of the case
study. Second, we review the translation of combined fragment
alt and also apply it to the second combined fragment of the
case study. In the translation of the alt combined fragment into
Promela code, because the combined fragment opt is a reduced
version of alt and both share the same logic, the translation into
Promela code of the combined fragment opt is also reviewed.
Finally, we detail the translation of the combined fragment
loop and apply it for translating the remaining part of the
case study by using the already reviewed combined fragments
translation into Promela solutions. The code of Figures 4, 5,
6, 7 and 8 in the Appendix present a translation into Promela
code for the complete case study of Figure 1.

A. Combined Fragment par into Promela

UML sequence diagrams allow modeling parallel inter-
actions among processes which are so useful for modeling
distributed and parallel scenarios. Assuming that different
objects can communicate in parallel, this combined fragment
is relevant for modeling parallel scenarios in which there are
multiple sources and multiple targets, or only one source and
multiple targets.

First, for a combined fragment par with multiple sources
and destinations without communication interference. That is
a simple situation for modeling in Promela because we can
model each sender and receiver as different processes not
using the same communication channels, that is, each couple
or pair of processes in communication do not interfere with the
communication of other couples. However, this situation is not
directly simple for only one source and multiple destinations
which is a common occurrence as in the case study of this
article.

www.ijacsa.thesai.org 589 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Second, for translating a combined fragment par into
Promela code in which there is only one sender process
and multiple target processes, the sender executes in parallel
some sub-processes depending on the required number of
parallel processes. This set of sub-processes sends messages
and receives messages in parallel, and has coordinated access
to the primary sender process properties. In that sense, each
property of the primary sender process is a shared resource
for the set of sub-processes, and each property has a token for
guaranteeing exclusive access when that is required. Therefore,
these shared properties and their tokens are global variables in
Promela code for modeled scenarios. Thus, if sub-processes
access different properties of the sender, those accesses are
in parallel; and token variables permit exclusively obtaining
a property value. Furthermore, it is relevant to distinguish
between active and inactive processes in a combined fragment
par. An active process in a combined fragment par sends,
receives, or executes both actions in more than one division
of the combined fragment.

Considering the case study combined fragment par, in the
section Appendix Codes 3 and 4 show the Promela code
translation for that combined fragment.

For a secure mutual exclusion, this article assumes that
the properties of the sender are global variables in Promela
code, and each property has a token to guarantee mutual
exclusion. Also, asynchronous channels of buffer size1 models
each token and each of them initially contains one stored
value. Thus, when a process wants to access a shared resource,
the process asks for the token, asks for a message in the
associated channel, and if it were free (not used), then it has
access to the resource. Note that during the combined fragment
par, if a shared resource is free, there is a message on the
channel. Moreover, if another sub-process wants to access to
the same resource, it must wait for the token, the existence of
a message in the channel, and for a sub-process that delivers
the token sending a message in the associated token channel
to wake up a process or sub-process that waits for the sent
message. This translation that guarantees exclusive access on
shared resources among multiple processes, participant objects
of a UML sequence diagram translated into Promela code, is
an additional improvement to previous translations of UML
sequence diagrams into Promela code.

B. Combined Fragment alt into Promela

This combined fragment presents different interaction al-
ternatives. Therefore, combined fragment alt represents a set
of execution options for sending and receiving messages.

Promela allows using the conditional structure for sending
messages. In that situation, each sender must include the
condition associated with its actions. In the Appendix section,
Code 2, Code 3, and Code 5 present the combined fragment
alt use.

It is relevant to mention that a combined fragment opt
behaves analog to a combined fragment alt with only one con-
ditional division. Thus, this translation of combined fragment
alt is also applicable for combined fragment opt.

Note that presenting examples with the use of messages
with parameters is an additional issue not shown in previous

mode ls for translating the original version of this case study
[10] [11].

C. Combined Fragment loop into Promela

A combined fragment loop permits a cycle of actions
when a defined guard condition is true. When that variable
is false, the combined fragment loop finishes proceeding with
the next action outside the loop. In each iteration of an
instance of this combined fragment, there can be active and
inactive participants, that is, active and inactive processes in the
associated Promela code. Each active process in the Promela
code presents a do cycle with a logical condition to iterate, and
inactive processes only present a conditional statement to know
the end of their cycle. In practice, in a Promela code of a UML
sequence diagram combined fragment loop, condition variables
are global because those variables are visible for active and
inactive processes.

In a combined fragment loop, it is relevant to differentiate
among active processes that communicate with synchronous
and asynchronous messages. A sender of asynchronous mes-
sages does not wait for a confirmation of reception and
continue with the iteration meanwhile the receiver can be
waiting for receiving a possible previously lost message.
The presence of asynchronous messages can originate faults
(missed messages), and model checking reveals these situ-
ations. Since asynchronous messages are part of the nature
of distributed systems [15], it is relevant to understand their
nature and include forms of synchronization for processes that
communicate by asynchronous messages.

Even though in a combined fragment loop, it is relevant to
define a number of iterations, there exist loops for which that
number is imprecise. In those scenarios, the end of the loop is
not directly determined, and this situation can generate infinite
cycles (a potential failure).

To illustrate the use of a combined fragment loop and its
representation in Promela code, see Code 3 in the section
Appendix. In iterations of a combined fragment loop there
should be actions to finishing the cycle. This situation should
be in any cycle, including those cycles without an exact
number of iterations. The use of non-deterministic options is
relevant to select values for simulating execution of system
scenarios, specifically for those which include at least two
potential options.

IV. LTL FORMULAS FOR VERIFYING THE CORRECTNESS
OF UML SEQUENCE DIAGRAMS

Defining LTL formulas for UML sequence diagrams re-
quire to determine the associated state transition system (STS
system). Logically, STS should represent the set of events in
a UML sequence diagram (each event potentially determines
a state change). Following and extending the original ideas of
[8], a set of tuples including guard variables for the sending
or reception of messages characterizes the states change in an
STS system:

• receiveNameOfMessage: Identifies the reception of the
message.

• sendNameOfMessage: Identifies the sending of the
message.

www.ijacsa.thesai.org 590 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

• proc1 ParticipantNameOfMessage: Identifies the par-
ticipant source of the message.

• proc2 ParticipantNameOfMessage: Identifies a par-
ticipant tar

Even though state variables allow writing LTL formulas
to verify properties of the modeled system execution, there
are no guards that represent return values of reply messages.
According to [6], return values are relevant because their
change allows verifying the existence of transient and Byzan-
tine faults. To represent reply values a new guard, variable-
NameOfMessage, is added to the tuple. Thus, an LTL formula
for the case study, after the participant User inserts the card
in the ATM (after the user sends the message sendInsertCard,
the User eventually receives a message to see the card state
(receiveR InsertCard), and that value is assigned to the variable
CardOKR InsertCard. Therefore, with the fact that a message
cannot be received if it was not sent, the associated LTL
formula for the sending and reception of a reply message
is CardOkR InsertCard; receiveR InsertCard. Note that this
LTL formula does not verify the existence of sources and
destination. Considering that execution, combined fragment
divisions usually depend on guard variables, those variables
are also part of the messages inside those divisions.

Figures 2 and 3 show the set of transition tuples for the
ATM system. The guards of these formulas permit verifying
properties of the ATM system. Taking into account the syntax
and semantic of symbols for defining LTL formulas (G for
always, globally; F for eventually, in the future; X for next;
and U for until), we define LTL formulas using variables of
the STS system to verify properties of the ATM system.

Taking into account syntax and semantic of symbols to
define LTL formulas (G for always, globally; F for eventually,
in the future; X for next; and U for until), it is possible to define
LTL formulas using variables of the STS system are defined
to verify properties of the ATM system. The following sets of
formulas are verified (they do not give a counterexample):

• G(receiveInsertCard ∧ (¬CardOKCardStatus ∨
¬PINOKPINStatu)→ ¬(proc1 UserwaitAccount ∧
receivewaitAccount). This LTL formula establishes
that always a card is inserted and either that card
of the associated got it PIN are not valid; then the
User will not be asked for his account. There is not
a counter-example for this formula..

• ¬(proc1 UserpickCash ∧ receivepickCash ∪
(proc1 Bankdebit ∧ rceivedebit)). This LTL formula
indicates that a User does not receive a message
pickCash meanwhile the Bank does not receive a
debit message. There is not a counter-example for
this formula.

• G((proc1 UserinsufFund ∧
receiveinsufFund) → (¬proc1 UserejectCard ∪
(proc1 ATMwaitOperation ∧ sendwaitOperation)).
This LTL formula indicates that a User that has
received a message InsufFund for insufficient funds
is not the main actor of the message for the eject
card action until the bank does not send a message
waitOperation.

V. DISCUSSION

We implemented these proposals using Eclipse [16] along
with their PlantUML [17] and Spin / Promela [18] plugins.
This technique permits validating behavioral modeling of
software systems using UML Sequence diagrams which is
of great value to guarantee software quality products. This
proposal solution performs an automated validation which is
one of its great properties for applying it to model the behavior
of software products in the software development process.
Nevertheless, current fast-development of software approaches
such as RUP and XP in the practice demand use less time for
modeling and formal modeling.

This article shows the importance of UML sequence dia-
grams and the benefits of modeling the behavior of software
systems. The use of combined fragments in UML sequence
diagrams gives the capacity for modeling algorithmic behavior,
and by their translation into Promela code along with the def-
inition and correctness verification of LTL formulas, detecting
algorithmic, and faults in the requirement for their correction
seem possible. Simulating faults in modeled systems behavior
to see their effect on the software system would permit defining
and applying solutions before their occurrence.

VI. RELATED WORKS

Primarily, Mellor et al. [19] detail about executable UML
models which are like code for their examination. Those
models do not work on model checking.

Baresi et al. [20] present an efficient solution for modeling
checking graph transformation systems. This proposal would
do not entirely support the model checking of model checking
of UML sequence diagrams for their UML class diagram
relations.

The works [21] and [22] applies model checking on
UML sequence diagrams using labels to identify combined
fragments for getting an ordered code in Eclipse Java [16]
using PlantUML [17] and Spin / Promela plugging [18], that
is, to accept a PlantUML sequence diagram as input and
generate its translation to Promela code. The use of labels
is recommendable to identify combined fragments for getting
an ordered code, even though those labels do not affect the
execution. These works do not directly describe the translation
into Promela code of UML sequence diagrams combined
fragments.

The work of [23] mainly describe and exemplify the
development of a relational database schema from a conceptual
UML schema in the form of a UML class diagram and OCL
constraints, but they do not link UML class diagrams and UML
sequence diagrams.

VII. CONCLUSIONS

This article shows new considerations for translating UML
sequence diagrams into Promela code expanding this process
for more case studies, specifically:

• distinguishing the synchronization nature of messages;

• defining how to work with shared resources through
processes and associated sub-processes;

www.ijacsa.thesai.org 591 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 2. First Part of State Transition System for ATM System.

www.ijacsa.thesai.org 592 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 3. Second Part of State Transition System for ATM System.

www.ijacsa.thesai.org 593 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

• giving steps to translate the combined fragment loop
regardless of their end condition; and

• translating into Promela reception and sending of
messages with parameters.

The steps to define a state transition system to establish and
verify LTL formulas in a Promela code for a UML sequence
diagram gives a way to check the correctness of UML sequence
diagram with the elements analyzed by this article. By having
a general algorithm to translate UML sequence diagrams into
Promela code along with knowing how to define a state
transition system for UML sequence diagrams, establishing
and verifying LTL formulas in the model system is a possible
task. Without a doubt, this articles proposal permits verifying
the correctness of UML sequence diagrams.

Promela code along with the LTL formula verification fa-
cilitates detection of faults in a diagram written in Promela, and
UML sequence diagram translations into Promela code would
permit their refinement. However, for complete verification of
correctness about UML sequence diagrams messages syntax,
the associated UML class diagrams are necessary to know their
methods language.

This research proposal establishes steps for translating
UML sequence diagrams into Promela code. Those steps are
implementable as a software application using free tools for
obtaining the Promela code and testing the UML sequence
diagrams correctness.

Because this article gives the necessary steps for translating
UML sequence diagrams into Promela code for the LTL
formulas verification, using the mentioned steps and producing
a tool with them would enable to find mistakes for their
correction and producing accurate software according to the
correctness of the software requirements. Even though Spin
and Promela are more linked to distributed environments, this
article demonstrates that is possible to use those tools in a
non-distributed environment like traditional UML models.

As a future work, extending currently produced tools to
support the translation into Promela code of other combined
fragments of UML sequence diagrams (break, strict, ignore,
consider, assert, and neg). Even though, the already reviewed
combined fragments in this article are algorithmically the
most relevant, our goal of producing a complete tool for
correctness verification takes us to work on the way to translate
these additional combined fragments. Now, there are steps
to translate a UML sequence diagram in Promela code for
implementing a software tool to generate Promela code on
similar case studies. However, that does not guarantee the
support for other UML diagram models such as class diagrams.
For a complete consistency among UML class diagrams and
UML sequence diagrams, UML class diagrams have to be
an additional input for a refinement process. Therefore, a
future goal is to produce a tool for refinement and consistency
verification among UML class and sequence diagrams.

REFERENCES

[1] S. G. Akl, “Superlinear performance in real-time parallel computation,”
J. Supercomput., vol. 29, no. 1, pp. 89–111, Jul. 2004. [Online].
Available: https://doi.org/10.1023/B:SUPE.0000022574.59906.20

[2] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[3] R. Miles and K. Hamilton, Learning UML 2.0. O’Reilly Media, Inc.,
2006.

[4] T. Pender, UML Bible, 1st ed. New York, NY, USA: John Wiley &
Sons, Inc., 2003.

[5] M. Y. Vardi, “An automata-theoretic approach to linear temporal
logic,” in Proceedings of the VIII Banff Higher Order Workshop
Conference on Logics for Concurrency : Structure Versus Automata:
Structure Versus Automata. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1996, pp. 238–266. [Online]. Available:
http://dl.acm.org/citation.cfm?id=239519.239527

[6] M. Usman, A. Nadeem, T.-h. Kim, and E.-s. Cho, “A survey of
consistency checking techniques for uml models,” in Proceedings of
the 2008 Advanced Software Engineering and Its Applications, ser.
ASEA ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 57–62. [Online]. Available: https://doi.org/10.1109/ASEA.2008.40

[7] Y. KAWAKAMI, T. YOKOGAWA, H. MIYAZAKI, S. AMASAKI,
Y. SATO, and M. HAYASE, “Symbolic model checking of interactions
in sequence diagrams with combined fragments by smv,” vol. 4, pp.
1692–1695, 11 2010.

[8] F. U. Muram, H. Tran, and U. Zdun, “A model checking based
approach for containment checking of uml sequence diagrams,” in
23rd Asia-Pacific Software Engineering Conference (APSEC 2016),
December 2016. [Online]. Available: http://eprints.cs.univie.ac.at/4830/

[9] J. Chen and S. S. Kulkarni, “Application of automated revision for
UML models: A case study,” in Distributed Computing and Networking
- 13th International Conference, ICDCN 2012, Hong Kong, China,
January 3-6, 2012. Proceedings, 2012, pp. 31–45. [Online]. Available:
https://doi.org/10.1007/978-3-642-25959-3 3

[10] M. Ben-Ari, Principles of the Spin Model Checker, 1st ed.
[11] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and

M. Pourzandi, “Formal verification and validation of uml 2.0 sequence
diagrams using source and destination of messages,” Electron. Notes
Theor. Comput. Sci., vol. 254, pp. 143–160, Oct. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.entcs.2009.09.064

[12] M. Debbabi, F. Hassane, Y. Jarraya, A. Soeanu, and L. Alawneh, Veri-
fication and Validation in Systems Engineering: Assessing UML/SysML
Design Models, 1st ed. Berlin, Heidelberg: Springer-Verlag, 2010.

[13] A. Nimiya, T. Yokogawa, H. Miyazaki, S. Amasaki, Y. Sato, and
M. Hayase, “Model checking consistency of uml diagrams using alloy,”
vol. 71, pp. 547–550, 11 2010.

[14] C. Vidal, R. Villarroel, X. L’opez, and J. Rubio, “Una propuesta de
algoritmo spin / promela para el anlisis y diagnstico de errores en
diagramas de secuencia uml,” Información Tecnológica, vol. 30, no. 1,
2019.

[15] M. A. Oubelli, N. Younsi, A. Amirat, and A. Menasria, “From uml
2.0 sequence diagrams to promela code by graph transformation using
atom3,” in Proceedings of the Third International Conference on
Computer Science and its Applications, CIIA, Saida, Algeria, 2011.

[16] “Eclipse foundation: The platform for open innovation and collabora-
tion,” http://www.eclipse.org/, accessed: 2018-13-08.

[17] “Plantuml in a nutshell,” http://en.plantuml.com/, accessed: 2018-13-08.
[18] “Eclipse plug-in for spin,” http://matrix.uni-

mb.si/en/science/tools/eclipse-plug-in-for-spin/, accessed: 2018-13-08.
[19] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-

Driven Architectures. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[20] L. Baresi, V. Rafe, A. T. Rahmani, and P. Spoletini, “An efficient
solution for model checking graph transformation systems,” Electron.
Notes Theor. Comput. Sci., vol. 213, no. 1, pp. 3–21, May 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.entcs.2008.04.071

[21] “Review of: Distributed systems: An algorithmic approach (2nd
edition) by sukumar ghosh,” SIGACT News, vol. 47, no. 4, pp.
13–14, Dec. 2016, reviewer-de Vera,Jr., Ramon. [Online]. Available:
http://doi.acm.org/10.1145/3023855.3023860

[22] S. Ghosh, Distributed Systems: An Algorithmic Approach, Second
Edition, 2nd ed. Chapman & Hall/CRC, 2014.

www.ijacsa.thesai.org 594 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

[23] M. Gogolla and K.-H. Doan, “Quality improvement of
conceptual uml and ocl schemata through model validation
and verification.” in Conceptual Modeling Perspectives, J. Cabot,
C. Gmez, O. Pastor, M.-R. Sancho, and E. Teniente, Eds.
Springer, 2017, pp. 155–168. [Online]. Available: http://dblp.uni-
trier.de/db/conf/birthday/olive2017.htmlGogollaD17

VIII. APPENDIX

Fig. 4. Case Study - Promela Code (Part I)

www.ijacsa.thesai.org 595 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 5. Case Study - Promela Code (Part II)

www.ijacsa.thesai.org 596 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 6. Case Study - Promela Code (Part III)

www.ijacsa.thesai.org 597 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 7. Case Study - Promela Code (Part IV)

www.ijacsa.thesai.org 598 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 8. Case Study - Promela Code (Part V)

www.ijacsa.thesai.org 599 | P a g e


