
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 01, JANUARY 2020 ISSN 2277-8616

3862
IJSTR©2020

www.ijstr.org

Modulating Crosscutting Concerns By The
Decorator Design Pattern Vs. Aspect Oriented

Programming In .NET

Cristian Pereira-Vásquez, Cristian Vidal-Silva, Erika Madariaga, Claudia Jiménez, Luis Urzúa

Abstract: This article describes and illustrates how to produce modular .NET software solutions by the use of Decorator design pattern and Aspect-
Oriented Programming (AOP) tool PostSharp. We applied both techniques for modularizing crosscutting concerns of a traditional modularization
example: logging function. This work presents logging solutions with the use of Decorator and PostSharp to modularize associated cross issues, along

with detailing the advantages and disadvantages of both solutions. Likewise, this work points out details of in PostSharp along with proposing the use of
PostSharp and Decorator to achieve solutions with a higher level of modularity.

Index Terms: AOP, .NET, Decorator, PostSharp, Crosscutting Concerns, Aspects.

——————————  ——————————

1 INTRODUCTION
 n programming, cross issues represent software features
whose modularization and isolation are complex or impossible
in some cases. Its implementation spreads between different
modules of the solution [1] [2]. As [3] indicate, typical
examples of cross-reference are persistence, error handling,
and defined logging or recording of actions. Figure 1 shows a
simple example of logging in .NET that represents the base
example of this study. As can be seen in Figure 1, the Main (..)
method of the class example creates an instance of the
Processor class to proceed with the Execute () method on it, a
method that has two responsibilities:

1. Print a message on the screen.
2. Have a record in Log files of the Log4Net library [4].

The Processor class then presents a violation of the principle
of single responsibility (Single Responsibility Principle SRP)
[5], which is an example of cross-cutting concern [3].

According to [6], Decorator is an object-oriented software
design pattern to define components of objects called
Decorators, where each Decorator conforms to the interface of
each component so that its presence is transparent to the
clients of such component [5] [6] [7]. Thanks to this, the
Decorator design pattern can handle action requests of its
components, as well as perform additional actions. This paper
reviews how to modularize cross issues using the Decorator
design pattern.

As they point out [8] [9] [10] [11], Aspect-Oriented
Programming (POA), thanks to the cross-sectional separation,
supports a set of principles of good object-oriented design;
among them SRP and the open-close principle. Besides, [12]
indicates that low coupling and high cohesion are fundamental
and necessary principles to achieve a modular software
design. Precisely, thanks to the separation of incumbencies,
POA allows a high level of cohesion and low coupling between
recommended modules and aspects.
Thus, the main objective of this work is to review the

applicability of the Decorator design pattern and the
use of PostSharp [13] for the modularization of code
in Figure 1. Hence, this article analyzes the use of

I

————————————————
 Cristian Pereira-Vásquez, Professional Computer Services Morris and

Opazo, Antonio Varas No. 920, Office No. 35, Temuco-Chile. E-mail:
cpereira@morrisopazo.com

 Cristian Vidal-Silva, professor at Departamento de Administración,
Facultad de Economía y Negocios, Universidad Católica del Norte,

Antofagasta, Chile. E-mail: cristian.vidal@ucn.cl

 Erika Madariaga, director of Ingeniería Informática, Facultad de
Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins,

Santiago, Chile. E-mail: erika.madariaga@ubo,cl

 Claudia Jiménez, director of Ingeniería Civil Informática, Facultad de

Ingeniería y Negocios, Universidad Viña del Mar, Viña del Mar, Chile. E-
mail: cjimenez@uvm.cl

 Luis Urzúa, professor at Escuela de Kinesiología, Facultad de Salud,

Universidad Santo Tomás, Talca, Chile. E-mail: lurzua@santotomas.cl

Fig. 1. Example of Logging Function in .NET.

mailto:cpereira@morrisopazo.com
mailto:cristian.vidal@ucn.cl
mailto:erika.madariaga@ubo,cl
mailto:cjimenez@uvm.cl
mailto:lurzua@santotomas.cl

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 01, JANUARY 2020 ISSN 2277-8616

3863
IJSTR©2020

www.ijstr.org

both approaches to modularize crosscutting concerns to look
for modular .NET solutions.

2 DECORATOR
Decorator is a design pattern that allows new behavior to be
added dynamically throughout the composition, which
corresponds to the process of wrapping an existing class with
a class that extends the behavior or state [3] [4].

Figure 2 [6] shows the general structure of a solution with the
Decorator design pattern, which presents different components
and relationships. Table I describes the components of Figure
2.

According to [7], the Decorator pattern is necessary when
there is a need to dynamically add behavior, as well as
eliminate responsibilities to a class. Thus, Figure 3 shows part
of the application of the decorator pattern of the example of
Figure 1: the Component interface and the
ConcreteComponent class, respectively (IProcessor interface
and Processor class). Note that the Execute (..) method this
time receives a parameter to identify the object that invokes it.
When analyzing the solution in Figure 3, the Processor class
now presents only one responsibility, without a record of
actions or logging that requires a Decorator class and a
ConcreteDecorator class, both with a single responsibility as
Figures 4 and 5 illustrate.

Figure 6 shows the main program of the example, together
with its output. Then, it verifies that the use of the Decorator
design pattern allows the inclusion of additional behavior on
existing methods of instances of recommended classes.
Besides, thanks to the Inheritance property, a
ConcreteDecorator class can include additional attributes and
methods, which are not added directly to the recommended
object.

Fig. 2. Structure of a Decorator Solution.

TABLA I

SURVEY FOR TEACHERS IN THE AREA OF TECHNOLOGY AND

INFORMATION TECHNOLOGY OF HIGHER EDUCATION ENTITIES IN

CHILE.

Component Definition

Interface

ConcreteComponent

class

Decorator class

Concrete Decorator

Class

Abstract interface or class that can have

dynamic behavior.

A class that implements the Component

interface to implement class

responsibilities.

A class that implements the Component

interface and contains a reference to an

instance of that interface. Structurally,

this class is an interface for more specific

Decorator classes.

A Class that freezes or implements the

Decorator to expand and specialize its

functionality.

Fig. 4. Decorator class for Logging Decorator Solution.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 01, JANUARY 2020 ISSN 2277-8616

3864
IJSTR©2020

www.ijstr.org

3 ASPECT-ORIENTED PROGRAMMING
Aspect-Oriented Programming (AOP) seeks the modular
behavior of classes, for which it defines advisable naive
classes and modulates cross-sectional issues through aspects
[1]. In this way, POA solutions allow classes to respect the
principle of sole responsibility, in addition to defining an
interaction of aspects and classes advised. POA is born with
AspectJ, a POA version of Java. Thus, such as [3] affirms, the
main components of AOP are the advice (advice), the point of
union (joinpoint), and the point of cut (pointcut). Advice
instances are the ―What‖ of AOP since the real mission of the
aspects is the encapsulation and modularization of
crosscutting concerns. Pointcut instances represent the
―Where and When‖ of AOP solutions (what time and where a
class is advised [3]). Also, a pointcut corresponds to the
definition of joinpoints (usually, by logical steps of the
execution of an advisable program).

4 SOLUTION & DISCUSSION
Thus, using AOP is possible to separate classes and the so-
called cross-incidents, achieving modular solutions. Given the
definition of cut-point rules, a weaving process generates
object code of the originally desired solution, as shown in
Figure 7 [13], that can adapt to the case study of this work.
Besides, according to [3] [12], the benefits of using POA
include the production of clean code that is easy to read, less
prone to failures or bugs and easier to maintain. As mentioned
before, the logging solution in Figure 1 does not respect the
SRP, since the Processor class, in addition to its main
functionality, presents a class instance to record activities or
log, and performs a record of actions before and after Perform
the main activity. So, in a traditional POA solution, this class
needs to be naive concerning the injection of structure and
behavior, an example of implicit dependence of classes on
aspects [10] [14]. In this context, PostSharp allows a class to
be displayed gradually or completely since a class explicitly
indicates the methods it exhibits.

Fig. 5. Class Concrete Decorator for Logging Decorator
Solution.

Fig. 6. Main Class and its Execution for Logging Decorator

Solution.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 01, JANUARY 2020 ISSN 2277-8616

3865
IJSTR©2020

www.ijstr.org

}

A structural difference concerning Java solutions from POA
such as AspectJ [11]; Griswold et al., 2016) and JPI is that with
PostSharp, the aspects are classes that inherit from classes of
aspects (class-aspect). Thus it is possible to classify types of
aspects, and establish class relationships such as inheritance
and composition between aspects, in addition to additional
relationships between classes and aspects whose review of
feasibility and usefulness is part of future work. Figures 8, 9,
and 10 show a PostSharp solution as an example of Figure 1.
As can be seen in Figures 8 and 9, the Processor class is
advised by the LoggingAspectIT class-aspect for the
introduction of the _Logger attribute in the recommended
class. Figure 9 presents the code of the LoggingAspectIT
class-aspect. Also, the Processor class exhibits the execution
of the Execute(..) method to the LoggingAspect class-aspect.
Figure 10 shows the LoggingAspect class-aspect code. Thus,
the Processor class is not naive and does not have a double
responsibility for the direct realization of actions, since it
exhibits classes-aspects for the inclusion of structural
elements and dynamic behavior.

5 CONCLUSIONS
This work presented how to produce modular .NET solutions
with the application of the Decorator object-oriented design
pattern and through the PostSharp POA framework. Below are
the final ideas of each of them:- Decorator, as a design pattern
for object-oriented solutions, allows you to add functionalities
to objects at runtime without modifying the class structure of
those objects. Besides, one of the Decorator properties is that
it can be implemented in any object-oriented programming
language since it does not require any additional plugin or
framework for its implementation, operation, and execution.
However, one of the practical disadvantages of Decorator is its
implementation that requires extra work since it is necessary
to define the hierarchical structure of the packaging of this
design pattern, as well as correct coding calls of methods.
Thus, no transparency or implicit actions exist in the
development of this design pattern. Adding functionality to
objects at runtime complicates the debugging process.

- PostSharp, as a POA .NET framework, allows cross-case
encapsulation through classes-aspects, and allows
transparency in the process of code injection, either in the
class structure or in the execution of recommended methods.
One of the great properties of PostSharp is the work through
classes-aspects for the implementation of tips or advice
instances, and thus it is not necessary to work with new
modules such as AspectJ aspects. Besides, the possibility of
establishing object-oriented relationships or associations
between classes and aspects, and aspects and classes. That
allows analyzing the pros and cons of a practical symbiosis
between PostSharp and Decorator. A potential disadvantage of
POA is the use of new frameworks such as PostSharp in .NET,
whose professional version is free for a limited time, even
when there is a project of an open-source version of it.

Fig. 7. Main Class and Aspect of Logging in the Weaving
Process.

Fig. 8. Main Class and PostSharp Logging Solution Processor
Class.

Fig. 9. Logging Aspect-Class AspectIT of Logging Solution
PostSharp Tissue stop.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 01, JANUARY 2020 ISSN 2277-8616

3866
IJSTR©2020

www.ijstr.org

This work demonstrates that cross-encapsulation
encapsulation in .NET solutions is relevant in the search for
modular .NET solutions.

REFERENCES
[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J. M. Loingtier, and J. Irwin, ―Aspect-Oriented
Programming‖, Proceeding of the European Conference
on Object-Oriented Programming (ECOOP), 1997,
Springer-Verlag LNCS 124, Finland.

[2] J. D. Gradecki, and N. Lesiecki, ―Mastering AspectJ:
Aspect-Oriented Programming in Java‖, John Wiley &
Sons, Inc., 2003, New York, NY, USA.

[3] M. D. Groves, ―AOP in .NET: Practical Aspect-Oriented
Programming‖, 2013, Manning Publications, USA.

[4] Log4net, ―Logging Services TM‖, The Apache log4net
project, https://logging.apache.org/log4net/. 2019.

[5] R. Martin, ―Agile Software Development: Principles,
Patterns and Practices‖, 2002, Prentice Hall, USA.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G.
Booch, ―Design Patterns: Elements of Reusable Object-
Oriented Software‖, Addison-Wesley Professional, 1994,
USA.

[7] S. Millett, ―Professional ASP.NET Design Patterns‖, 2010,
Wrox, USA.

[8] C. Vidal, D. Hernández, C. Pereira, and C. Del Rio,
―Aplicación de la Modelación Orientada a Aspectos‖,
Información Tecnológica, 2012, vol. 23, no. 1, pp. 3 – 12,
doi: 10.4067/S0718-07642012000100002.

[9] C. Vidal, S. Rivero, L. López, and C. Pereira, ―Propuesta y
Aplicación de Diagramas de Clases JPI‖, Información
Tecnológica, 2014, vol. 25, no. 5, pp. 113 – 120, doi:
10.4067/S0718-07642014000500016.

[10] C. Vidal, and R. Villarroel, ―JPI UML: JPI class and
sequence diagrams for Aspect-Oriented JPI applications‖,
in Proceedings of XXXIII International Conference of the
Chilean Computer Society, 2014, Talca, Chile, November.

[11] E. Bodden, E. Tanter, and M. Inostroza, ―Join Point
Interfaces for Safe and Flexible Decoupling of Aspects‖,
in ACM Transaction on Software Engineering and
Methodology, 2014, vol. 23, no. 1, pp. 1 – 41, doi:
10.1145/2559933.

[12] D. Wampler, ―Aspect-Oriented Design Principles: Lessons
from Object-Oriented Design‖, Sixth International
Conference on Aspect-Oriented Software Development
(AOSD'07), 2007, Vancouver, British Columbia, Canada,
pp. 12 – 16, March.

[13] SharpCrafters, ―SharpCrafters s.r.o.‖, PostSharp
Principles, http://www.postsharp.net/blog/post/Day-1-
e28093-OnExceptionAspect. 2019.

[14] C. Vidal, R. Saens, C. Del Rio, and R. Villarroel,
―OOAspectZ and Aspect-Oriented UML Class Diagram‖,
Ingeniería e Investigación Journal, 2013, Medellín,
Colombia, vol. 33., no. 3, pp. 66 – 71.

Fig. 10. Class-Aspect Logging Aspect of Logging Solution
PostSharp.

