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Abstract—A Feature Model (FM) is an information model to
represent commonalities and variabilities for all the products of a
Software Product Line (SPL). The complexity and big size of real
feature models makes their manual analysis for determining the
product configurations validity a tedious or even infeasible task.
Efficient solutions for the diagnosis of errors in the Automated
Analysis of Feature Models (AAFM) already exist such as FMDiag
and FlexDiag. Thus, this work describes the fundamental basis
for both diagnosis algorithms to apply the first of them on the
validity of FM product configurations. The results highlight the
applicability and efficiency of FMDiag and invite us to look for
additional applications of that algorithm in the AAFM scenarios.
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I. INTRODUCTION

The main goal of Software Product Line Engineering
(SPLE) is the reuse of assets (features) for the products
definition looking for improving the quality, accelerating the
production and time-to-market, and reducing the production
costs of all the process [1]. Such as Bastos et al. [2] highlight,
organizations emphasize the proactive reuse, interchangeable
components, and multi-product planning cycles for the faster
and cheaper construction of high-quality products.

According to [3], the processes of domain and application
engineering constitute the SPLE of which, the first one looks
for a development for reuse, that is, defining software products
in terms of commonalities and variabilities, and also their
constraints, whereas the second process refers to development
with reuse by the products derivation from Feature Models
(FMs).

Different proposals of variability modeling techniques exist
for the common and varying assets representation within a
SPL, but FMs are one of the most widely used techniques for
the SPL variability modeling [4]. Feature Model (FM) is a
visual language for accomplishing the domain engineering in
Software Product Line (SPL) [5], that is, FM is adequate for
a SPL representation [6]. The application engineering process
results in the set of valid features selection (products). Figure 1
[7] shows a feature model for the variability of a simple car.
As we can appreciate, different types of model elements exist
which describe constraints. For example, such as Apel et al. [7]
argue, a car always has a body, transmission, and engine (filled
circle), a car does not necessarily have a trailer (empty circle),

the engine can be powered with gasoline or with electricity or
both (filled arc).

The configuration of a FM refers to the process of choosing
and unchoosing features in a feature model to reach a full
configuration [8]. Paz [9] remarks that making decisions in a
FM for deriving valid products usually is not a straightforward
task. Example of valid products for the FM of Figure 1 are
P, = {Car, Body, Transmission, Engine, Automatic,
Gasoline} and Py = {Car, Body, Transmission, Engine,
Manual, Electric}.

The Automated Analysis of Feature Models (AAFM) is
about computer-assisted operations for obtaining information
from FMs. The “valid product” or “valid configuration” is an
AAFM operation that receives a FM and a product to return
a value to know if the product is or not valid, that is, if the
product belongs to the set of products that the FM represents
[10].

For the dynamism and growing size of SPLs, defining
and applying efficient solutions for an AAFM operation to
determine “valid product” instances constitute a relevant work.

FMDiag [11] and FlexDiag [12] are two efficient diagnosis
solution on FMs, that is, to determine minimal sets of con-
straints in the configuration knowledge base (FM) to delete
or adapt for making the remaining constraints a consistent
set. This article look to answer: How can we apply existing
diagnosis solutions for the “valid product” AAFM operation?
This paper describes the theory of FMDiag an FlexDiag
for applying them into the “valid product” AAFM operation
to potentially get efficient solutions. For the FMDiag and
FlexDiag algorithmic simplicity and their previously known
efficiency on diagnosis, their application represent a significant
advance for the SPL community.

This work uses the FAMA tool [13] [14] that includes
implementations of the FMDiag and FlexDiag for different
reasoner tools. Specifically, I applied the FAMA working on
the Choco reasoner to adapt and apply FMDiag and FlexDiag
for the “valid product” analysis to evaluate and validate their
performance and results.

In the next, this paper structures as follows: Section II de-
scribes related works for the “valid product” AAFM operation;
Section III describes main FMs ideas and discusses the main
structure and functioning of the diagnosis algorithms FMDiag
and FlexDiag; Section IV presents main concepts of the Valid
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Fig. 1. Feature model example for a simple car variability model.

product AAFM operation; Section V shows and highlights the
results of applying FMDiag for the “valid product” AAFM
operation, and Section VI concludes and gives feature work
ideas.

II. RELATED WORK

AAFM constitutes an active research and application area.
Next, we mentioned only a few of related work:

e  White et al. [15] uses a CSP solver for debugging
basic feature model configurations and automating
the evolving product configurations on basic feature
models.

e The work of Ross-Frantz et al. [16] uses the Or-
thogonal Variability Model (OVM) instances for their
mapping on a CSP for the developing of FaMa-
OVM to identify void models, dead and false optional
features.

e Hu et al. [17] proposes an approach for evolving
basic feature model and analyze their products evo-
lution. They present refactoring strategies and semi-
automated support for the commonality extraction and
feature refactoring.

e  Mauro et al. [18] present a framework for the model-
ing and evolving reconfiguration of context-aware SPL
instances. They consider the environmental impact
on updated features and new contextual information
on the SPL evolution. That research work defines a
meta-model for Hybrid Feature Model (HyFM) for the
attributes in features and represent contextual infor-
mation. According to their findings, being possible of
proposing configuration on FMs of up 10.000 features
in less than a minute is more than enough for the
majority of the daily use cases.

III. FEATURE MODELS & AAFM DIAGNOSIS

A Feature Model (FM) is a information modeling tool
useful for the representation all the products of a SPL along
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with their features and relations [10]. Different kind of FMs
already exist such as cardinality-based FMs, extended-FMs
which support the attributes definition, and basic FMs. For
their simplicity and usability, in this work we use basic FMs.
The following relationships are distinguishable in a FM:

e  Unary relations. These are between a father and a child
feature, and we can distinguish between mandatory
(black circle in top of the child feature) and optional
(white circle in top of the child feature) child features.
In Figure 1, (Car, Body) and (Car, Pulls Trailer) are
examples of mandatory and optional relations.

e Set relations. These relations define a father feature
of a set of children features, and we can distinguish
between optional and alternative sets, that is, for the
optional set we can select more than one feature if
their father is selected, and for the alternative set only
one child feature from the options set of features.
In both cases of set features, we need to select at
least one feature. In Figure 1, (Engine, {Gasoline,
Electric} and (Transmission, { Automatic, Manual} are
examples of optional and alternative set relations of
features, respectively.

Such as Benavides et al. [10] highlight, defining and
optimizing AAFM operations represent a current and active
research area such as the diagnosis on a FM to discover and
inform possible mistakes. FMDiag [11] and FastDiag [19] are
diagnosis solution applicable on FMs and both solutions deter-
mines a minimal diagnosis for a given ranking of preferences.

Structurally, FMDiag defines a base function (algorithm 1)
and a recursive function (algorithm 2). The base function
receives a set of customer requirements S to analyze its con-
sistency, and a configuration knowledge base AC that includes
S, that is, AC without S should be consistent. FMDiag returns
an empty diagnosis if S is not empty and (AC — S) is non-
consistent. Otherwise, the base function calls the recursive
function Diag for D =, S and AC.

The function Diag receives D that represents a subset of
the main set to analyze previously removed from the base of
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knowledge AC (initially D is empty), S (the current set in
analysis), and AC (the current base of knowledge that contains
S). Diag presents two base cases:

e If Disnot () and the current AC is consistent then Diag
returns an empty diagnosis, that means the diagnosis
was not in S, that is, D contains the diagnosis. This
situation can occur after the second recursive call (in
the first call D is empty and AC is not-consistent).

e If the size of S, that is, the number of constraints in §
were either <= m for FlexDiag or = 1 for FMDiag
then Diag returns the current set S as a diagnosis. That
base case can occur if the previous described one is
not true, that is, S contains a diagnosis.

If no base-case were valid, we know that S contains the
diagnosis and the size of S is not minimal. Hence, the function
Diag partitions S in S; (from the 1st until the constraint in the
middle) and S (from the middle + 1 to the last constraint) to
go to the 1st recursive call for the arguments D = S5, S = 51,
and AC = AC— S5, that is, to take off Sy from AC to evaluate
the consistency of AC (AC the second half of the current S).
If AC were consistent, because current D is not empty, Diag
returns () (the diagnosis is in D). If AC were non-consistent, the
current set S contains inconsistencies and repeat the division
process on the current S, and new recursive calls proceed again.
The Diag function receives D = S, S = 51, and AC = AC—
Sy from the 1st recursive call. The first recursive call returns
A1. The second recursive call receives D = Aq, S = Ss, and
AC = AC — A; (the second recursive call needs the result
of the Ist one to proceed). The 2nd recursive call returns As.
Thus, the function Diag returns A; U Ay as a diagnosis.

Applying FMDiag for diagnosis on product configurations
seems direct, that is, S consists of the constraints for the
features selection of the product in analysis, and AC contains
the set of constraints for the consistent FM plus S.

Algorithm 1 FMDiag(S, AC): A
if isEmpty(S) or inconsistent(AC-S) then
return (J;
else
return Diag(f), S, AC);
end if

Vol. 10, No. 1, 2019

Algorithm 2 Diag(D, S = {s1, ..., s}, AC): A

if D # () and consistent(AC) then
return (J;
end if

if FlexActive then
if size(S) <= m then
return S;
end if
else
if size(S) = 1 then
return S;
end if
end if
r
k=5];
Sl = %515 ey Sk}’ S2 = {Sk-‘rl? "'757'};
Ay = Diag(S2,S1, AC — S3);
Ay = Diag(Ay, So, AC — Ay);
return(A; U Ag);

Syntactically, the main difference between FMDiag and
FlexDiag are the size of the minimal set to return, but semanti-
cally their differences are highly relevant. Such as the works of
Felfernig et al. [12] [20] remark, FlexDiag is more adequate for
diagnosis within time limits regardless the trade-offs between
diagnosis quality and performance of the diagnostic search.

IV. VALID PRODUCT AAFM OPERATION

Products of an SPL are the combination and configuration
of features through the assembly of corresponding and reusable
artifacts [21]. Such as Benavides et al. [10] describe, “valid
product” is an AAFM operation example that receives as input
a FM and a product (a set of features), and returns a boolean
result that determines either the product belongs to the set of
products that the feature model represents or not. The products
P; and P, are examples of valid products of the FM of Figure
1, whereas P; = {Car, Body, Transmission, PullsTrailer,
Engine, Automatic, Manual, Gasoline, Electric} is a
non-valid product: Ps selects all features and does not respect
a defined alternative set cross-tree constraint in the model.
Figures 2 and 3 show the features selection (green features)
for valid products of P} and P, respectively whereas Figure 4
shows the features selection (green features) for the non-valid
products P .

Applying FMDiag and FlexDiag for the validity of FM
product would be direct: we need to define the constraints
for the product to analyze, and the constraints for the FM
definition to review in. We can repeat that process for analyzing
multiple products.

V. APPLICATION RESULTS & DISCUSSION

For space reasons we only present the FMDiag testing
results on the diagnosis of “valid product”. FlexDiag follows
the same functioning idea and by applying it we can get
more efficient and lesser precise solutions. Tables 1 and 2
present the steps of applying FMDiag for the diagnosis of
product P; and P, for the SPL of Figure 1 to appreciate
the algorithmic functioning for the diagnosis on the “valid
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Fig. 2. Pj: A valid product example for the simple car variability model.
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Fig. 3.  Py: A valid product example for the simple car variability model.
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Fig. 4. Ps3: A non-valid product example for the simple car variability model.
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TABLE 1. FMDIAG APPLICATION EXAMPLE FOR THE DIAGNOSIS OF INCONSISTENCIES OF Ps.
[ Step | D [ S [ AC [ S1 [ Sa [ return [ prev ]
{ Car, Body, { Automatic, Transmission, { Car, Body, { Engine, .
1 Transmission, Body, cl, ¢2, ¢3, Car, c4, c5, Transmission, Automatic, { Electric } 0
PullsTrailer, c6, Manual, PullsTrailer, PullsTrailer } Manual, Gasoline,
Engine, Gasoline, Electric, Engine } Electric }
Automatic,
Manual,
Gasoline,
Electric }
{ Engine, { Car, Body, { Transmission, Body, cl,
2 Automatic, Transmission, c2, c3, Car, c4, c5, cb, 0 0 0 1
Manual, PullsTrailer } PullsTrailer }
Gasoline,
Electric }
Engine, Automatic, Transmission,
3 0 A{utongatic, {Body, cl, ¢2, c3, Car, c4, cb5, { Engi@e, { M‘“P“‘”* { Electric } | 1
Manual, c6, Manual, PullsTrailer, Automatic } Gasolz_ne,
Gasoline, Gasoline, Electric, Engine } Electric }
Electric }
4 { Manual, { Engine, { Automatic, Transmission, 0 0 0 3
Gasoline, Automatic } Body, cl, ¢2, ¢3, Car, c4, c5,
Electric } c6, PullsTrailer, Engine }
5 0 { Manual, { Automatic, Transmission, { Manual } { Gasoline, { Electric }| 3
Gasoline, Body, cl, ¢2, ¢3, Car, c4, c5, Electric }
Electric } c6, Manual, PullsTrailer,
Gasoline, Electric, Engine }
6 { Gasoline, { Manual } { Automatic, Transmission, 1] 0 0 5
Flectric } Body, cl, ¢2, ¢3, Car, c4, c5,
c6, Manual, PullsTrailer,
Engine }
7 0 { Gasoline, { Automatic, Transmission, { Gasoline } { Electric } { Electric } | 5
Electric } Body, cl, c2, ¢3, Car, c4, c5,
c6, Manual, PullsTrailer,
Gasoline, Electric, Engine }
8 { Electric } { Gasoline } { Automatic, Transmission, 0 0 0 7
Body, cl, ¢2, ¢3, Car, c4, c5,
c6, Manual, PullsTrailer,
Gasoline, Engine }
9 0 { Electric } { Automatic, Transmission, 1] 0 { Electric } | 7
Body, cl, ¢2, ¢3, Car, c4, c5,
c6, Manual, PullsTrailer,
Gasoline, Electric, Engine }

product” AAFM operation. FMDiag can directly determine the
validity of a product, and return involved constraints for a non-
valid configuration.

Tables 3 and 4 show the diagnosis results for the “valid
product” operations on small size FMs of the SPLOT [22]
and big size FMs generated by the Betty tool [23], respec-
tively. FMDiag reaches a fast performance for the feature
models diagnosis even though FMDiag results contains only
one inconsistency cause. Felfernig et al. [11] detail how to
obtain all the diagnosis of a FM applying FMDiag. FMDiag
and FlexDiag are appropriate for interactive scenarios which
demand for a fast-time for diagnosis.

The works of Felfernig et al. [11] and [12] compared the
performance of FMDiag and FlexDiag to Constraint Satis-
faction Problem (CSP) solutions to highlight the efficiency
advantages of both solutions for preferred diagnosis.

Such as Felfernig et al. [24] remark, variability manage-
ment is essential for the product configurations of SPL looking
for extensive customization to attend different clients’ needs.
The AAFM solutions such as FMDiag [11] and FlexDiag
[12] [20] efficiently achieve that goal. Undoubtedly, FMDiag

Main limitations of this study are the dependency of
discussed solutions concerning CSP tools.

VI. CONCLUSION

Defining a “valid product” configuration is a current
and demanding activity in product-lines areas such as in-
component-based software and SPL applications. We show
that existing diagnosis solution are applicable for efficiently
determining the validity of a product configuration which can
be non-valid for non-respecting the model constraints. Thus,
our defined research question is effectively answered. Even
though we show FMDiag application results only, FlexDiag is
usally more efficient, but lesser precise.

For the efficient obtained results of applying FMDiag and
FlexDiag solutions and their algorithmic simplicity, we can
look for new applications on the AAFM area since diagnosis
algorithms are able for error detection in general.
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