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This work explores a holographic proposal to describe light nuclide spectroscopy by considering ex-
tensions to the well-known bottom-up AdS/QCD proposals, the hardwall and softwall models. We also 
propose an alternative description inspired by the Woods-Saxon potential. We find the static dilaton as-
sociated with this potential in this Wood-Saxon-like model. We compute the nuclide spectra finding that, 
despite their pure AdS/QCD origin, hardwall and softwall, as monoparametric models, have good accuracy 
and precision since the RMS error is near 11% and 4% respectively. In the case of the Wood-Saxon model, 
the RMS was around 1%. We also discuss configurational entropy as a tool to categorize which model 
is suitable to describe nuclides in terms of stability. We found that configurational entropy resembles 
a stability line, independent from nuclear spin, for symmetric light nuclides when considering softwall 
and Wood-Saxon-like models. For the hardwall case, configurational entropy, despite increasing with the 
constituent number, depends on the nuclear spin. Thus, the Woods-Saxon-like model emerges as the best 
choice to describe light nuclide spectroscopy in the bottom-up scenario.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Holography nowadays is one of the most used tools to de-
scribe non-perturbative phenomena. It is not restricted to hadronic 
physics only (glueballs, mesons, and baryons [1–7]). There are ap-
plications to heavy ion collisions [8,9], condensed matter [10], neu-
tron stars [11,12], or fluid mechanics [13–16]. After more than two 
decades from Maldacena’s seminal work [17], holography seems 
to provide a fruitful soil to develop effective models to approach 
non-perturbative phenomena.

Among the non-perturbative systems available in nature, one of 
the most challenging is the nuclear realm. The nuclear force ob-
served in nucleon systems is a low energy strong force residual 
approximately, thus implying it is non-perturbative. At the holo-
graphic level, this hypothesis allows using bottom-up models to 
describe such phenomenology. This manuscript will focus on de-
scribing the light nuclide spectrum using holographic tools.
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There are significant challenges in describing composite nucleus 
spectroscopy candidates in holography. The holographic spectrum 
should describe the nuclear mass as a function of the atomic Z and 
mass A numbers. In the case of hadrons, the spectra are organized 
by defined mass poles, the so-called Regge Trajectories, where each 
excited state defines a new hadron in the family, as in the AdS/QCD 
bottom-up radial case [5,18,19]. In the nuclear case, the excited 
nuclear states come from transitions defining metastable states 
that do not differ so much from the nucleus ground state mass. 
Thus, the holographic nuclear mass spectrum should not have a 
large mass gap compared to the ground state mass.

Another ingredient to take into account is the holographic dic-
tionary. In the hadronic case, the conformal dimension is con-
nected with the operator that creates hadrons at the boundary. 
When we consider the twist operator, the conformal dimension 
associated with the bulk dual field is translated into the hadronic 
constituent number [20,21]. In the nuclear case, we expect the 
same behavior. Since atomic and mass numbers characterize the 
nucleus, the conformal dimension of the dual bulk field should 
carry this constituent information. Therefore a sensible AdS/QCD 
model of light nuclei should capture the constituent nucleon de-
pendence on the dual bulk field conformal dimension.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The discussion on nuclei stability analyses is a more subtle 
problem. Nuclei are composite states of two different components, 
i.e., protons and neutrons. Each one is composed of three first-
generation valence quarks. So, their baryonic numbers are far from 
vanishing, and it is not consistent with associating nuclear sta-
bility with leptonic annihilation. This fact excludes the possibility 
of making a stability analysis through electromagnetic decay con-
stants, as mesonic holography literature proves [3,7,22]. Nuclear 
stability is associated with the arrangement of nucleons. Thus, 
looking for the associated information with the different config-
urations is natural. In this context, the concept of configurational 
entropy (CE) emerges as a natural observable to account for the 
nuclear stability [23,24]. Fortunately, in the last years, the holo-
graphic calculation of configurational entropy has been extensively 
discussed in the context of bottom-up models [25–29].

The summary of this work is: in section 2 we provide a holo-
graphic model for light nuclei in the context of bottom-up models. 
We discuss how computing the mass spectrum for light-nuclides 
in the context of the so-called hardwall and softwall models, and a 
new approach, the hybrid Woods-Saxon model. Section 3 addresses 
nuclear stability from the perspective of configurational entropy. 
Finally, Section 4 presents conclusions for this work.

2. Holographic model for light nuclide

In the AdS/QCD a la bottom-up, it has been established that 
colored medium properties observed at the boundary system are 
encoded into bulk fields and the bulk metric. In nuclear systems, 
considered as a system of nucleons interacting through a strong 
residual force, we can extend the hypothesis used in hadronic 
holography to the nuclear medium. The intensity of this force, re-
sponsible for keeping the nucleus cohered, depends on the mass 
number A and the atomic number Z , i.e., the constituent num-
ber. Thus, it is quite natural to extend the bottom-up confinement 
procedure to mimic the nuclear force.

Following the ideas above, a given nucleus endowed with an 
atomic number Z and A nucleons (Z protons and A − Z neu-
trons), i.e., a nuclide, will be dual to normalizable bulk mode. Thus, 
nuclides in this formulation are considered fundamental objects 
composed by A nucleons, i.e., we neglect the nuclide inner con-
figuration. For simplicity, we will focus on symmetric nuclides, i.e., 
those with A = 2 Z .

Our starting point is to consider the nuclide, defined by a mass 
number A, and the spin p, characterized by a p-form bulk field 
Ap(ζ, xμ). In the bulk, these p-forms obey the following general 
action principle

IBulk =
∫

d5x
√−g e−�(ζ) LNuclide, (1)

where the dilaton field �(ζ) defines the confinement mechanism, 
and LNuclide defines the p-form Lagrangian density that sets the 
dual physics in the bulk. This lagrangian density is defined as

LNuclide = (−1)p

2
×[

1

g2
p

gmn gm1 n1 . . . gmp np ∇m Am1...mp ∇n An1...np

−M2
5 gm1 n1 . . . gmp np Am...mp An...np

]
. (2)

Notice that gp is a coupling that sets units in the bulk action.
We will consider the bulk manifold described by the five-

dimensional AdS space parametrized by the Poincaré Patch, de-
fined as
2

dS2 = R2

ζ 2

(
dζ 2 + ημν dxμ dxν

)
, (3)

where R is the AdS curvature Radius and ζ represents the holo-
graphic coordinate and the Greek indices label the minkowskian 
coordinates. The conformal boundary lies at ζ → 0 as usual.

After choosing a transverse gauge [1], i.e.,

gm1m2 Am1 m2...mp = 0 (4)

∇m1 Am1 m2...mp = 0, (5)

and performing a Fourier decomposition, the action defined above 
brings the following set of equations of motion

∂ζ

[
e−B(ζ ) ψ ′(ζ )

]
+ M2

0 e−B(ζ ) ψ(ζ ) − M2
5 R2

ζ 2
e−B(ζ ) ψ(ζ ) = 0,

(6)

where we have defined Am1...mp (ζ, q) = Am1...mp (q) ψ(ζ ), with 
Ap(q) being the Schwinger source of the operators that create nu-
clides at the boundary as composite objects and ψ(ζ ) defines the 
bulk eigenmode. The function B(ζ ) = �(ζ) + β log (R/ζ ) encloses 
the geometrical effect associated to the geometry and the confin-
ing dilaton, and β = −(3 − 2 p) fixes the bulk field spin: for scalar 
fields we have β = −3 and for vector fields, β = −1. Notice that 
we have considered the on-shell mass −q2 = M2

0, defining the nu-
clide mass. The bulk mass M2

5 defines the nuclide identity.
When we apply the confinement criterium, the normalizable 

ground state ψ(ζ ) will be dual to the eigenstate associated with 
the nuclide. The eigenvalue of this bulk p-form defines the nuclide 
mass through the holographic Schrodinger-like potential V (ζ ) con-
structed by applying the

V (ζ ) = 1

4
B ′(ζ )2 − 1

2
B ′′(ζ ) + M2

5 R2

ζ 2
. (7)

This particular picture, provided by the bottom-up models, 
summarizes the nucleon many-body phenomena in the behavior of 
geometrically confined bulk fields. In bottom-up models, the con-
finement mechanism is defined by the procedure to transform the 
continuum spectrum into a discrete one. We can do this by de-
forming the geometry or adding a dilaton profile.

Following the holography recipe, the conformal dimension of 
the bulk p-form field, i.e., 	, is dual to the dimension of the oper-
ator creating the nuclide, dimO, living at the conformal boundary 
at ζ → 0. This is captured into the holographic dictionary as

Ap(ζ,q) ∝ Ap(q) ζ	−p . (8)

We can write the conformal dimension 	 in terms of the twist, 
which accounts for the nuclide constituents, as

	 → dimO = τ + L, (9)

where L is the angular momentum number.
We will consider nucleons as constituent objects. Thus, their as-

sociated twist is one. In this context, a given light nucleus should 
be identified with a bag with N nucleons, symmetric under SU(2)

as in the Heisenberg Isospin model. Then, the main difference 
between the bottom-up formulation for QCD and nuclear spec-
troscopy lies in how we consider the twist. In the former case, 
twist comes from constituent quarks. In the latter, twist comes 
from nucleons. As a first approximation, we will consider all nu-
cleons in s-wave, i.e., L = 0.

For a general p-form, spanned in Fourier space as Ap(ζ, q) =
Ap(q) ψ(ζ ), we have in the limit ζ → 0 that the confinement 
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mechanism is not relevant. Thus, the equations of motion reduce 
to those in pure AdS:

(
ζ

R

)−β

∂ζ

[(
ζ

R

)β

ψ ′ (ζ )

]
+ (−q2)ψ(ζ ) − M2

5 R2

ζ 2
ψ(ζ ) = 0,

(10)

where the prime denotes derivative with respect to ζ , the pa-
rameter β = −(3 − 2 p) accounts for p-form index effect in the 
equations, and M2

5 defines the p-form bulk mass.
The solution for this equation is written in terms of Bessel func-

tions of first kind Jn(x) as

ψ(ζ ) = A(q) ζ
1−β

2 J |	−2| (M0 ζ ) (11)

and for the bulk mass we have

M2
5 R2 = (	 − p) (	 − p − 1 + β)

= (	 − p) (	 + p − 4) . (12)

This expression plays a fundamental part since it will modify 
the behavior of the holographic nuclide ground state in terms of 
the constituent mass.

Once we have defined the bulk mass in terms of the conformal 
dimension, which carries information about nuclide composition 
and spin, we will write the holographic potential as

V (ζ ) = 15 − 16	 + 4	2

4 ζ 2
+ (3 − 2 p)

2 ζ
�′ + 1

4
�′2 − �′′

2
. (13)

Solving the potential above, we obtain the nuclide mass spec-
trum M0(Z) and the Schrodinger-like modes φ Z

0 (ζ ) associated 
with nuclides at the conformal boundary labeled by their atomic 
number Z , recalling that the constituent number is 	 = A = 2 Z
for symmetric nuclides.

2.1. Bottom-up holographic models for the light nuclide masses

Among the AdS/QCD models, the most successful in describing 
hadronic properties, particularly hadronic spectra, are the so-called 
hardwall and softwall models. In such models, the main idea is to 
place confinement as a geometrical deformation. Confinement in 
the bulk implies the emergence of bounded states, which will be 
dual to hadronic states living at the boundary. The dilaton field 
�(ζ) (see eqn. (6) and (13) for the holographic potential) catego-
rizes these bottom-up models.

In the first place, we will consider the so-called hardwall model 
[31,32]. We fix the dilaton to zero and place a hard cutoff �N (a 
D-Brane) in the holographic coordinate to raise bounded states in 
a similar form as the infinite square well does in quantum me-
chanics. In this situation, the spectrum is given in terms of Bessel 
function zeroes αn,m , depending on the hard cutoff, and the num-
ber of constituents as:

M0(	) = �N α	−2,1 with�N =
M4

2He

α2,1
.

Masses for the light nuclide spectrum are summarized in Ta-
ble 1.

Another well-known bottom-up approach we will discuss in 
this manuscript is the softwall model [33]. This approach con-
siders setting the dilaton field as �(ζ) = κ2 ζ 2. This choice en-
sures that the mass spectrum is linear with the excitation number. 
The dilaton slope κ carries information about the quark-antiquark 
strong interaction. In AdS/QCD, the emergence of the linear spec-
trum consistent with the Regge theory at the boundary is a clear 
3

signal of confinement in bulk. In the case of the softwall model, 
the quadratic dilaton brings a holographic potential that resembles 
the 2-dimensional radial harmonic potential with a general linear 
spectrum given generically by M2

n = A κ2(n + B). Thus, κ also de-
fines holographically the Regge slope.

For the light nuclide case, following the intuition that nuclear 
force depends on the mass number A and that κ carries informa-
tion about the interaction, an educated guess is to consider that 
nuclear κ scales with the mass number as κ =

√
	
2 κ0. The scale 

κ0 is an energy scale associated with the proton mass that fixes 
energy units. Thus, the mass spectrum for light nuclides is given 
by

M2
0(	) = 	κ2

0 (	 − p) . (14)

The calculation of the light nuclide masses using the spectrum 
given above is summarized in Table 1.

Notice that in both hardwall and softwall, we consider that 
the constituent number 	 instead of the excitation number (as in 
AdS/QCD), fixed to the ground state, defines light nuclide masses.

In order to quantify the accuracy and precision exhibited by 
the models, we will follow the RMS analysis. For a model with N
parameters used to fit M observables Oi , having relative deviation 
δOi with the model outcomes, the RMS error is calculated as

δRMS =
√√√√ 1

M − N

M∑
i

(
δOi

Oi

)2

. (15)

For the hardwall model the RMS error fitting 29 states with one 
single parameter �N is 11.6%. In the case of the softwall model, 
the RMS associated with 29 masses fitted with one parameter κ0
is 4.4%.

Hardwall and softwall models accurately describe the light 
nuclei mass spectrum. However, both potentials have infinite 
bounded states, holographically dual to light nuclei. In principle, 
this mass tower is stable and does not decay, implying that heavy 
nuclei, with large values of 	, are stable, which phenomenologi-
cally is not accurate. Also, the shifting between excited states keeps 
constant, which is not expected in the nuclear case, where the ex-
cited states of a given nuclide are connected with decay processes. 
These decays do not change the ground mass drastically.

Thus, to introduce a finite set of stable ground states regarding 
the constituent number 	 with a small enough mass shifting with 
the ground state mass, we will formulate a hybrid holographic po-
tential with a Wood-Saxon-like profile. We will provide a deeper 
discussion in the next section. Then, we will reconstruct the as-
sociated dilaton associated with this potential. As in the softwall 
model case, the dilaton will be dependent on the mass number 
and nuclear spin. It is interesting to notice that Woods-Saxon po-
tential emerges as a good tool to describe nuclear spectra, how-
ever, coming from a holographic perspective, different from the 
original nuclear shell model. Such a model has been quite success-
ful in describing the nuclear structure and provides properties of 
bound-state and continuum single-particle wavefunctions such as 
nuclear single-particle energies or nuclear radii calculations. How-
ever, WS potential (or any other single-particle) does not help 
compute total binding energies since it is not based on a spe-
cific two-body interaction. This single-particle potential proposed 
in [34] has been used as a less complicated alternative to other 
multi-particle approaches, as the standard Hartree-Fock calculation 
(see for example [35,36]). WS-like potential for heavy nuclei pro-
vides a good description of nucleon energy levels. Their uses have 
been extended to other physics branches beyond nuclear physics, 
such as confined systems in condensed matter [37].
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Table 1
This table summarizes the light nuclide spectrum running from Z = 2 (He) up to Z = 30 (Ca) symmetric nuclei. We have used 
�N = 0.7794 u for the hardwall, κ0 = 1.0006 u for the softwall and A1 = A2 = 1.863 u GeV and B = 2.5 u for the Woods-Saxon-like 
model. Experimental masses read from [30].

Holographic light nuclide spectrum

Experimental nuclide data Hard Wall Model Soft Wall Model Wood-Saxon-like Model

Z Nuclear Spin MExp
0 (u) MTh

0 (u) Rel. Error (%) MTh
0 (u) Rel. Error (%) MTh

0 (u) Rel. Error (%)

2 0 4.00260 4.00260 0.00 4.002603 0.00 4.00391 0.01
3 1 6.01511 5.91421 1.68 5.480791 8.88 6.10883 2.34
4 0 8.00530 7.74401 3.26 8.005206 0.01 8.16760 2.70
5 3 10.0129 9.52800 4.84 8.372045 16.4 10.2040 2.39
6 0 12.0000 11.2819 5.98 12.00781 3.59 12.2212 2.21
7 1 14.0030 13.0143 7.06 13.49952 3.59 14.2297 1.89
8 0 15.9949 14.7303 7.91 16.01302 0.09 16.2301 1.68
9 1 18.0009 16.4333 8.71 17.50424 2.76 18.2244 1.40
10 0 19.9949 18.1259 9.34 20.01301 0.10 20.2137 1.23
11 3 21.9944 19.8096 9.93 20.45835 6.98 22.1989 1.02
12 0 23.9850 21.4859 10.4 24.01561 0.13 24.1805 0.89
13 5 25.9869 23.1558 10.9 23.38185 10.1 26.1593 0.72
14 0 27.9769 24.8201 11.3 28.01822 0.15 28.1374 0.61
15 1 29.9783 26.4794 11.7 29.51496 1.54 30.1092 0.47
16 0 31.9721 28.1343 12.0 32.02082 0.15 32.0811 0.36
17 0 33.9738 29.7853 12.3 34.02213 0.14 34.0512 0.24
18 0 35.9675 31.4328 12.6 36.02349 0.15 36.0196 0.15
19 3 37.9691 33.0770 12.9 36.49290 3.89 37.9867 0.05
20 0 39.9626 34.7183 13.1 40.02603 0.16 39.9523 0.03
21 0 41.9655 36.3569 13.3 42.02733 0.15 41.9168 0.12
22 0 43.9597 37.9929 13.6 44.02863 0.16 43.8801 0.18
23 0 45.9602 39.6267 13.8 46.02994 0.15 45.8425 0.27
24 0 47.9542 41.9540 14.0 48.03124 0.16 47.8038 0.33
25 0 49.9542 42.8880 14.1 50.03254 0.16 49.7643 0.40
26 0 51.9481 44.5158 14.3 52.03384 0.16 51.7240 0.45
27 0 53.9484 46.1418 14.5 54.03644 0.16 53.6829 0.51
28 0 55.9421 47.7663 14.6 56.03644 0.17 55.6411 0.56
29 1 57.9445 49.3891 14.8 57.53525 0.71 57.5987 0.62
30 0 59.9418 51.0106 14.9 60.03905 0.16 59.5555 0.67
The key point of the proposed inverse holographic engineer-
ing is the dilaton reconstruction. At sufficient large values of ζ , 
we expect that the holographic potential acquires a softened pro-
file, flowing asymptotically to a constant value, opposite as in the 
AdS/QCD soft-wall model, where the potential goes asymptotically 
to infinite. The dilaton controls the asymptotic evolution of the 
holographic potential. Thus, by fixing the asymptotic form of the 
potential (7) with a Woods-Saxon profile, according to the expres-
sion⎡
⎣A1 − A2

1 + exp
(

ζ−B
	

)
⎤
⎦	 = (3 − 2 p)

2 ζ
�′ + 1

4
�′2 − �′′

2
, (16)

we can compute the dilaton field for each nuclide. We have sup-
posed that the depth size in the potential depends on the con-
stituent number encoded in 	.

With this profile we can compute the holographic potential and 
the holographic light nuclei mass. The Table 1 summarizes the nu-
merical results in this model. It is remarkable that the holographic 
reconstruction of the Woods-Saxon potential provides a very pre-
cise model for the nuclear masses. It is a clear case where the 
dynamics of the bulk modes with respect to the holographic di-
rection captures the spectral properties of the boundary modes 
dynamics with respect to the radial direction in coordinate space.

In the Woods-Saxon-like model, having three parameters A1, 
A2, and B to control the potential well size, modeling 29 light nu-
clide masses brings an RMS error, following eqn. (15), around 1.2%.

2.2. Holographic nuclide spectra

Let us devote a few comments on the holographic nature of 
the calculated nuclide spectra, summarized in Table 1. Recall that 
4

masses in Table 1 are composed by ground states of each holo-
graphic potential, characterized by 	, according to eqn. (13). In 
the case of hardwall and softwall models coming from AdS/QCD, it 
is interesting to wonder about the validity of these models applied 
to the nuclear realm and then extrapolate to the Woods-Saxon-like 
approach.

In the three models discussed above, the key ingredient is the 
holographic potential that gives rise to the radial eigenvalue spec-
trum, i.e., defined in terms of the excitation level. In the hadronic 
case, the energy shifting between levels is high enough to consider 
each excitation as a metastable hadronic state. However, the en-
ergy shift is not high enough in the nuclear context compared with 
nuclide mass. Thus, excitation levels in the radial case correspond 
with the energy transitions between nucleons in the nuclide that, 
in essence, do not change the nucleus mass far from a nucleon 
mass, depending on the nature of the energy transition, which 
would imply changing the atomic number Z , leaving the mass 
number A untouched, or gamma transitions leaving both Z and 
A intact. These last nuclides, which are not in the ground state, 
with nucleons in levels above the ground energy, but leaving un-
changed the atomic number and mass number, are called isomers. 
Recall that we are considering transitions that leave the nucleon 
number in the nuclide unaltered. We will consider this last affir-
mation as a criterion to test the validity of a given holographic 
model describing nuclear spectroscopy.

Table 2 summarizes the ground state and the first five excited 
radial states calculated in each holographic model considering the 
Ca nuclide. In the case of hardwall and softwall models, the en-
ergy shifting between radial states and the ground state grows 
with the excitation number of several nucleon masses. Thus, the 
excited states cannot be considered the same nuclide described by 
the ground state. From the nuclear phenomenology, these sorts of 
transitions are not allowed.
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Table 2
This table summarizes the 40

20Ca ground state (in bold font) with the first five excited radial states for each 
holographic model considered. In the hardwall and softwall models, the energy shifting between radial 
levels and the ground state 	 Mn = Mn − M0 grows with the excitation level beyond the single nucleon 
mass. In the case of the Woods-Saxon-like approach, the energy shifting is less than the nucleon mass.

Holographic 40
20Ca excited states

Hardwall Softwall Woods-Saxon-like

n Mn (u) 	 Mn (u) n Mn (u) 	 Mn (u) n Mn (u) 	 Mn (u)

0 34.7183 0 0 40.02603 0 0 39.9523 0
1 38.8472 4.1289 1 41.0145 0.9884 1 40.0085 0.0562
2 42.4237 7.7054 2 41.9796 1.9536 2 40.0641 0.1117
3 45.7299 11.012 3 42.9231 2.8971 3 40.1187 0.1665
4 48.8703 14.152 4 43.8463 3.8203 4 40.1728 0.2206
5 51.8971 17.179 5 44.7505 4.7244 5 40.2262 0.2740
In the case of the Wood-Saxon-like model, the energy shift-
ing between radial level and the ground state is less than 20% of 
the nucleon mass. Thus, in the first five excited states, the nuclide 
mass does not change beyond one nucleon mass in the case of He 
and remains almost the same for the Ca and Zn cases. Thus, the 
Woods-Saxon-like model is more suitable for describing nuclide 
spectroscopy than the AdS/QCD counterparts at the holographic 
level.

3. Nuclear stability

Recently, it has been proposed that the configurational entropy 
(CE) of the hadronic state works as a measure of its stability: 
the smaller the CE, the more stable the hadron [38–41]. In the 
holographic approach, the spectral properties of a given hadron en-
code in the holographic bulk mode. Thus, bulk modes contain the 
wave-function holographic necessary to compute the differential 
configurational entropy of such a hadronic state. So, it is natural to 
associate the configurational entropy of the holographic bulk mode 
describing the nuclear state with its stability. Here we will perform 
the holographic computation of the CE of the light nuclei in each 
of the three different holographic models presented in the previ-
ous section.

In our case we restrict to bosonic nuclei state, that are integer 
spin arrangements of many spin 1/2 baryons. The dual description 
of bosonic nuclei is encoded in a p-form field in the deformed 
AdS5 space with bulk action given by eq. (2). In this sense, the 
configuration of the bulk mode appears in the functional depen-
dence on the holographic direction ζ .

Configurational entropy measures the relationship between the 
informational content of the physical solutions regarding their 
equations of motion. CE is also a logarithmic measure of how 
spatially-localized solutions with given energy content have spatial 
complexity. Thus, it measures information content in the solutions 
to the equations of motion. CE has a connection with the relative 
abundance related to the abundance of the hadronic states. We ex-
pect the CE of atomic nuclei to grow with the atomic number.

In the original formulation, coming from information theory, CE 
can be interpreted as measuring how much information is neces-
sary to describe localized functions, i.e., e.o.m. solutions, concern-
ing their parameter set. In general, dynamical solutions come from 
extremizing an action. CE measures the available information in 
those solutions.

The association between CE and complexity is translated into 
stability. Since CE measures the complexity of a given physical sys-
tem, physical states with higher CE require more energy to be 
produced in nature than their low CE counterparts. More energy 
also implies more modes conforming such a physical state, indi-
cating CE increases with the coarseness degree. In this sense, CE is 
also a measure of stability. Recall that CE measures the relative or-
dering in field configuration space, showing how energy is related 
5

to coarseness. The higher the constituents, the higher the energy 
and relative configurational entropy. In addition, studies of active 
matter systems show that the stationary final state of a many-
particle system minimizes the configurational entropy [42,43]. In 
this sense, dynamical stability is related to configurational entropy: 
the smaller the CE, the more stable the system.

Configurational entropy for a discrete variable with probabilities 
pn is defined from the Shannon entropy as follows [4,39,44]

SC = −
∑

n

pn log pn. (17)

In the case of continuous variables, we have the differential con-
figurational entropy (DCE) defined as

SC [ f ] = −
∫

dd k f̃ (k) log f̃ (k) , (18)

where f̃ (k) = f (k) / f (k)Max defines the modal fraction, f (k)Max
is the maximum value assumed by f (k). Also we have that f (k) ∈
L2

(
R2

)
i.e., the square-integrable space of functions on the plane. 

This ensures that f (k) has a defined Fourier transform. Usually, 
this f (k) function is associated with the energy density in mo-
mentum space, ρ(k). Thus, to compute the DCE for a given physical 
system, we must address the following algorithm:

1. Obtain the localized solutions to the equations of motion.
2. Evaluate the on-shell energy density.
3. Transform to momentum space.
4. Calculate the modal fraction.
5. Evaluate the DCE integral given in the expression (18).

We will follow this prescription to compute the DCE for the 
three holographic models discussed above.

In the AdS/CFT context, the holographic approach to config-
urational entropy in bottom-up and top-down AdS/QCD mod-
els was made in [38]. For hadronic states, it was introduced in 
[25,29,39,45–47] and references therein. In the context of heavy 
quarkonium stability, DCE was used as a tool to explore thermal 
behavior in a colored medium [26], in presence of magnetic fields 
[48] or at finite density [49]. Recently, in [50] was used DCE to ad-
dress the holographic deconfinement phase transition in bottom-
up AdS/QCD.

In our case, we will compute the DCE for the holographic nu-
clide starting from the associated bulk stress-energy tensor

Tmn = 2√−g

∂
[√−g LNuclide

]
∂ gmn

, (19)

which holds since the action does not depend on metric tensor 
derivatives. From the action principle (2) we can compute the 
stress-energy tensor for holographic nuclides:
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Fig. 1. Differential Configurational Entropy (DCE) for holographic models considered as a function of the atomic number Z . In the left panel we plot the hard wall DCE. The 
middle panel depicts the DCE for the soft wall model. In the left panel, we depict the Woods-Saxon-like DCE result.
Tmn = −gmn LNuclide + (−1)p e−�

[
1

g2
p

gm1 n1 . . . gmp np ×

∇m Am1...mp ∇n An1...np + p gm2n2 . . . gmpnp ×(
1

g2
p

gσρ ∇σ Am m2,...mp ∇ρ An n2...np − M2
5 Am m2...mp An n2...np

)]

(20)

The p-form bulk field can be spanned in terms of plane waves 
as

Am1...mp (ζ, x) = εm1...mp e−iq·x ψ(ζ ). (21)

Once we define a polarization for the p-form field, since nu-
clides are supposed to be at rest, we will choose a rest frame, i.e.,
q = (M0, 	0). It is important to remark that eq. (20) consider a real 
p-form field, while the plane wave modes are complex valued. The 
complex phase is absorbed in the � factor and does not contribut 
to the DCE. By taking the 00-component, associated with the en-
ergy density ρp(ζ ), we obtain

ρ(ζ ) ≡ T00 = e−�(ζ)

2

(
ζ 2

R2

)p

×{[
1

g2
p

(
M2

0 ψ2 + ψ ′2
)

− M2
5 R2

ζ 2
ψ2

]}
�, (22)

where � is a factor carrying plane wave and polarization con-
traction factors. This factor becomes irrelevant during the modal 
fraction calculation.

The Fourier transform reads as

ρ̄(k) =
∞∫

0

dζeikζ ρ(ζ ). (23)

The modal fraction is defined following [23] as

f (k) = |ρ̄(k)|2∫
dk|ρ̄(k)|2 . (24)

The differential configurational entropy for the holographic light 
nuclide is then written as

S DC E = −
∫

dk f̃ (k) log f̃ (k) (25)

where f̃ (k) = f (k) / f (k)Max. The results for the holographic light 
nuclide DCE, calculated in each model considered, are summa-
rized in the Fig. 1. Notice that each nuclide is defined by the 
ground state calculated from the holographic potential. This local-
ized ground state is characterized by its nuclear spin and mass 
6

number encoded into 	. Thus, although we are not summing over 
different states, we increase the particle content, i.e., the coarse-
ness degree. Thus, the calculated DCE is a holographic measure of 
stability.

It is essential to make a difference with the hadronic DCE at 
this stage. The energy density ρ(ζ ), in general, is a function of the 
mass spectrum M2(n) and the particle content. In the hadronic 
case, the particle content is fixed to the valence quarks while the 
hadronic mass increases, implying that DCE increases with the ex-
citation number n. In the nuclear case considered here, the energy 
is fixed by the ground state mass while the nucleon content is in-
cremented. The energy density comes from bulk modes calculated 
from the holographic potential. The potential carries the confine-
ment information inherited by the dilaton field. Thus, in the case 
of hadrons, the direct consequence is the emergence of Regge tra-
jectories. The bulk mass M5 controls the particle content in such 
a hadronic scenario via 	, which is dual to the dimension of the 
operators creating hadrons, fixed by the number of valence quarks. 
In the nuclear case, we extend this idea to consider that the bulk 
mass carries the nucleon number A (coarseness degree) of the nu-
clide at hand. In this sense, the DCE measures nuclear stability in 
the holographic context. However, if the energy and configuration 
(given by the bulk mass) are degenerate, the CE is also degener-
ate since there is no quantity in holography that directly measures 
the inner structure or configuration. According to the holographic 
dictionary, the state identity (hadronic or nuclear) is defined by 
the conformal dimension since it is connected with the operator 
creating these states at the conformal boundary, which does not 
consider the constituent inner configuration. In this sense, at the 
holographic level, nuclides can be understood as a bag filled with 
constituent interacting nucleons.

In the case of the hardwall model (left panel in Fig. 1), DCE 
does not provide evidence of a single entropy evolution with the 
atomic number Z . Instead, the DCE tends to organize by spin-
labeled structures, emulating Regge trajectories for hadrons. This 
particular behavior comes from the AdS/QCD naturalness that in-
herited the hardwall since this model was done initially to address 
hadronic spectra. As was expected, when restricting for only one 
nuclear spin DCE increases with the nucleon number.

For soft-wall-like model results, summarized in the central 
panel in Fig. 1, all nuclide states define a single trajectory despite 
their spin, despite their AdS/QCD inherit behavior. DCE increases 
with the atomic number Z , as was expected. We can consider this 
trajectory a holographic stability line since most of the symmetric 
light nuclides are stable. Thus, we can expect that at some Z , when 
the nuclide becomes heavier, instability may arise. This observation 
suggests that asymmetric nuclides can exhibit differences in their 
relative DCE with their local partners, making them out of the sta-
bility trajectory. Also, it suggests that nuclides become unstable for 
some high values of Z . To address the last hypothesis, it is neces-
sary to parametrize the inner nuclide configuration since labeling 
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with particle constituents number only introduces degeneracy, i.e., 
two different nuclides could have the same mass number.

In the case of the Woods-Saxon-like model, plotted in the right 
panel of Fig. 1, DCE grows with the atomic number, as was ex-
pected. We observed a small local jump where spin-1 18

9 F has a 
bigger CE than spin-0 20

10Ne. We do not observe another local jump 
when running calculations up to 56

28Ni. Neither when we have spin 
shiftings, as it happens in the neighborhood of 38

19K. Also, as in the 
softwall model case, the nuclide organization defines a trajectory 
in terms of stability. However, we can explore this fact further 
since we do not have a holographic mechanism to describe nu-
cleon configuration inside nuclides.

4. Conclusions

In the present work, we explored three different holographic 
models for nuclear mass spectroscopy. Motivated by the fact that 
nuclear force emerges from the strong interaction, we consider the 
hardwall and softwall models as the first approximation to model 
light nuclide masses. In both situations, for a fixed nuclide, ra-
dial excitations could be interpreted as nuclides different from the 
ground state since their mass difference is bigger than the proton 
mass. We propose a different dilaton associated with a holographic 
Woods-Saxon-like potential to improve this situation. This sort of 
potential has a bounded above spectrum, consistent with the ex-
perimental light nuclide spectrum.

The outcomes we present in Table 1 give reasonable results in 
terms of precision and accuracy. However, if we explore the con-
nection between higher excited states and mass shifts, as Table 2
summarizes, we realize that the Woods-Saxon-like holographic re-
construction is the more accurate in reproducing the nuclear mass 
spectra.

In our case, the light nuclide spectrum is defined as the collection 
of ground states calculated from holographic potentials, eqn. (13), 
depending on the constituent number (see Table 1), i.e., the mass 
number A. This situation is different from hadronic physics, where 
a spectrum is defined as the ground state and their excitations cal-
culated from a single potential with the constituent number fixed.

We expect that radial excitations do not grow in energy, im-
plying a different nuclide from the ground state (see Table 2). 
The bulk dilaton should give rise to a holographic potential whose 
spectrum is bounded from above. In our case, we use a holographic 
modification of the Woods-Saxon potential.

Even though the hardwall model does not reproduce the light 
nuclide mass spectrum with high precision, it provides qualitatively 
correct results. Also, the deviation from the observed spectrum is 
low compared with experimental data. We have an RMS near 11%. 
The softwall model also involves only one parameter and has an 
RMS near 4%. However, a good description of the nuclear mass 
spectrum requires a non-trivial dependence of the dilaton coupling 
on the atomic number, which we implement ad-hoc. Indeed, since 
the dilaton coupling changes with an atomic number, the softwall 
model considers a one-parameter family of softwall dilatons to de-
scribe the nuclear spectra. We also remark that, although hardwall 
and softwall are models to describe hadrons originally, these mod-
els could work, as a first approximation, when describing light 
nuclei.

It is interesting to comment about the role played by the dila-
ton field. Following the softwall original motivation, the dilaton 
field carries information about the strong interaction nature, trans-
lating into the emergence of Regge Trajectories. Thus, our first 
hypothesis is that the dilaton field can be promoted to the dual ob-
ject that carries information about confining forces at the bound-
ary. The real question behind this hypothesis relies upon how to 
build up a proper dilaton to mimic such a confining interaction at 
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the boundary. The answer is in the holographic bottom-up poten-
tial depicted in eqn. (13). We followed this path to construct the 
holographic version of the Woods-Saxon potential, giving the most 
accurate bottom-up description for nuclide spectroscopy (RMS er-
ror near 1%).

In the first case, the excited states make a remarkable differ-
ence between hadronic and nuclear spectroscopy since the nature 
of such states. In the hadronic case, constituents remain the same 
while the difference between ground and excited states lies in 
their inner configuration. These configuration patterns define new 
metastable states different from the ground one, i.e., the mass 
difference between the excited state and the ground state is not 
negligible compared to the latter. In the nuclear case, unless we 
consider SU(2) isospin symmetry, constituents would change when 
the ground state moves to excited metastable states. This fact im-
plies that the excited nuclei and the ground state mass difference 
should not be bigger than one nucleon mass, where transitions are 
energetically forbidden with more than one nucleon transmuting 
into another. Thus, a good holographic approach to nuclear spec-
troscopy should have mass differences between excited and ground 
states negligible compared to nucleon mass.

In addition to the spectroscopic analysis, we also perform a sta-
bility analysis by considering the configurational entropy.

In the configurational entropy case, since these sorts of bottom-
up models do not include inner nuclear structure, this observable 
brings clues about stability regarding the number of constituents. 
Recall that this constituent number information is enclosed in the 
bulk mass through the conformal dimension of the operator that 
creates nuclides at the boundary. This operator is written in terms 
of the twist, carrying constituent information. On the other hand, it 
is expected that the configurational entropy behavior should char-
acterize the stability in terms of the number of constituents or the 
atomic number for nuclear systems. Regarding hadrons, configu-
rational entropy analysis depends on the spin and hadronic mass 
since it resembles the Regge Trajectory in terms of stability, i.e., 
higher radial excitations of a given family have bigger configura-
tional entropy than the hadronic ground state. Similar behavior 
comes when decay constants are introduced in the analysis: higher 
excitations have lesser decay constant than the ground state. In 
the nuclear case, configurational entropy analysis shows that the 
hardwall is not a good holographic model since light nuclides are 
organized in spin-dependent structures in the DCE plot (see Fig. 1). 
Softwall and Wood-Saxon models have better results since the en-
tropy grows with the constituent number independently from spin.

After the spectroscopic and configurational entropic analysis, 
we conclude that the best among the three models depicted here 
to describe the light nuclide spectrum is the Woods-Saxon-like 
bottom-up approach.
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